作用:解决过拟合
tf.nn中的nn指Neural Net (NN),也就是神经网络模块
prob: 概率,
源码看不懂啊,先学会用
from __future__ import print_function
import tensorflow as tf
import numpy as np
with tf.Session() as sess:
x=np.asarray([1,2,3,4,5,6,7,8,9,10],dtype=np.float32)
# [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.]
print(x)
# keep_prob= 0.1,预期有9个数据*0, 实际上不一定
out = tf.nn.dropout(x, 0.1)
# 注意有可能是
# 变为原来的10倍是因为里面有一个操作是 x / keep_prob
# [ 0. 20. 30. 0. 0. 0. 0. 0. 0. 0.]
# [ 0. 0. 30. 0. 0. 0. 0. 0. 0. 0.]
print(out.eval())
好,接下来看源码
def _get_noise_shape(x, noise_shape):
# If noise_shape is none return immediately.
# 返回x的维度
if noise_shape is None:
return array_ops.shape(x)
try:
# Best effort to figure out the intended shape.
# If not possible, let the op to handle it.
# In eager mode exception will show up.
noise_shape_ = tensor_shape.as_shape(noise_shape)
except (TypeError, ValueError):
return noise_shape
if x.shape.dims is not None and len(x.shape.dims) == len(noise_shape_.dims):
new_dims = []
for i, dim in enumerate(x.shape.dims):
if noise_shape_.dims[i].value is None and dim.value is not None:
new_dims.append(dim.value)
else:
new_dims.append(noise_shape_.dims[i].value)
return tensor_shape.TensorShape(new_dims)
return noise_shape
@tf_export("nn.dropout")
def dropout(x, keep_prob, noise_shape=None, seed=None, name=None): # pylint: disable=invalid-name
"""Computes dropout.
With probability `keep_prob`, outputs the input element scaled up by
`1 / keep_prob`, otherwise outputs `0`. The scaling is so that the expected
sum is unchanged.
By default, each element is kept or dropped independently. If `noise_shape`
is specified, it must be
[broadcastable](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)
to the shape of `x`, and only dimensions with `noise_shape[i] == shape(x)[i]`
will make independent decisions. For example, if `shape(x) = [k, l, m, n]`
and `noise_shape = [k, 1, 1, n]`, each batch and channel component will be
kept independently and each row and column will be kept or not kept together.
Args:
x: A floating point tensor.
keep_prob: A scalar `Tensor` with the same type as x. The probability
that each element is kept.
noise_shape: A 1-D `Tensor` of type `int32`, representing the
shape for randomly generated keep/drop flags.
seed: A Python integer. Used to create random seeds. See
`tf.set_random_seed`
for behavior.
name: A name for this operation (optional).
Returns:
A Tensor of the same shape of `x`.
Raises:
ValueError: If `keep_prob` is not in `(0, 1]` or if `x` is not a floating
point tensor.
"""
with ops.name_scope(name, "dropout", [x]) as name:
# 参数校验
x = ops.convert_to_tensor(x, name="x")
if not x.dtype.is_floating:
raise ValueError("x has to be a floating point tensor since it's going to"
" be scaled. Got a %s tensor instead." % x.dtype)
if isinstance(keep_prob, numbers.Real) and not 0 < keep_prob <= 1:
raise ValueError("keep_prob must be a scalar tensor or a float in the "
"range (0, 1], got %g" % keep_prob)
# Early return if nothing needs to be dropped.
# 如果keep_prob是1,也就是没有数据需要*0,直接返回
if isinstance(keep_prob, float) and keep_prob == 1:
return x
if context.executing_eagerly():
if isinstance(keep_prob, ops.EagerTensor):
if keep_prob.numpy() == 1:
return x
else:
# keep_prob转为张量
keep_prob = ops.convert_to_tensor(
keep_prob, dtype=x.dtype, name="keep_prob")
keep_prob.get_shape().assert_is_compatible_with(tensor_shape.scalar())
# Do nothing if we know keep_prob == 1
if tensor_util.constant_value(keep_prob) == 1:
return x
noise_shape = _get_noise_shape(x, noise_shape)
# uniform [keep_prob, 1.0 + keep_prob)
# 生成随机张量,取值范围[keep_prob, 1.0 + keep_prob)
random_tensor = keep_prob
random_tensor += random_ops.random_uniform(
noise_shape, seed=seed, dtype=x.dtype)
# 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob)
# 在期间[keep_prob, 1.0)之间的,取值为0.
# 在期间[1.0, 1.0+keep_prob)之间的,取值为1.
binary_tensor = math_ops.floor(random_tensor)
ret = math_ops.div(x, keep_prob) * binary_tensor
if not context.executing_eagerly():
ret.set_shape(x.get_shape())
return ret
总结下
dropout的操作如下:
- 将x转为张量,假设x = [1, 2, 3]
- 生成跟x一样维度的binary_tensor,binary_tensor = [0, 1, 0]
- x / keep_prob * binary_tensor