推断的思路非常easy。若一棵树是平衡二叉树,它的左右子树都是平衡二叉树,而且左右子树的高度差小于等于1。注意。实现的时候,推断左右子树的平衡性时。能够顺便计算子树高度,不用再另外计算一次。以下是其递归实现:
#include <iostream> using namespace std; struct TreeNode { int val; TreeNode *left; TreeNode *right; TreeNode(int x) : val(x), left(NULL), right(NULL) {} }; class Solution { public: bool isBalanced(TreeNode *root) { int height; return myBalance(root,height); } bool myBalance(TreeNode *root, int &height){//注意,将height用引用传进来 if(root==NULL){//若为空,高度就为0,平衡 height=0; return true; } int leftHeight; int rightHeight; bool leftBalance=myBalance(root->left,leftHeight);//root的左子树平衡吗? bool rightBalance=myBalance(root->right,rightHeight);//root的右子树平衡吗? height=max(leftHeight,rightHeight)+1;//以root为根的这棵树的高度。是root的左子树、右子树中的较高者加上root本身这个结点(即加1) if(leftBalance && rightBalance && abs(leftHeight-rightHeight)<=1)//假设左子树平衡,右子树平衡,而且左右子树高度差小于等于1 return true; return false; } }; int main() { TreeNode *root=new TreeNode(1); TreeNode *left=new TreeNode(2); TreeNode *right=new TreeNode(3); root->left=left; root->right=right; Solution *s=new Solution(); cout<<s->isBalanced(root)<<endl; system("pause"); return 0; }