平衡二叉查找树

package avitree;
/**
 * 平衡二叉查找树类
 *
 * @param <T>
 */
public class AvlTree<T extends Comparable<? super T>> {
	
	public static void main(String[] args) {
		AvlTree<Integer> tree = new AvlTree<Integer>();
		//第一组数据 測试 右左双旋转
//		tree.insert(9);
//		tree.insert(5);
//		tree.insert(10);
//		tree.insert(7);
//		tree.insert(6);// 插这个的时候会有双旋转哦,用于測试 右左双旋转
//		tree.preOrder(tree.root);
		//第二组数据 測试左右双旋转
		
		tree.insert(9);
		tree.insert(5);
		tree.insert(20);
		tree.insert(17);
		tree.insert(18);
		tree.preOrder(tree.root);
	}
	
	/**
	 * 树的根节点
	 */
	public AvlNode<T> root = null;
	
	/**
	 * 构造一颗空的平衡二叉树
	 * 
	 */
	public AvlTree() {
		
	}
	
	/**
	 * 插入一个元素,通过这种方法来插入元素
	 * @param element
	 */
	public void insert(T element) {
		if (this.root == null) {
			this.root = insert(element, this.root);
		} else {
			insert(element, this.root);
		}
	}
	
	/**
	 * 插入一个包括元素的新节点
	 * 
	 * @param element
	 * @param target
	 * @return
	 */
	private AvlNode<T> insert(T element, AvlNode<T> target) {
		if (target == null) {
			return new AvlNode<T>(element, null, null);
		}

		int compareResult = element.compareTo(target.element);// 比較里面的元素大小
		if (compareResult < 0) {
			target.left = insert(element, target.left);
			if (Math.abs(height(target.left) - height(target.right)) > 1) {// 左右子树高度差>1 打破平衡。选择单旋转或者双旋转调节平衡
				if (element.compareTo(target.left.element) < 0) {//单旋转
					target = rotateLeft(target);
				} else {// 双旋转
					target = doubleRotateLeft(target);
				}
			}
		} else if (compareResult > 0) {
			target.right = insert(element, target.right);
			if (Math.abs(height(target.left) - height(target.right)) > 1) {
				if (element.compareTo(target.right.element) > 0) {//单旋转
					target = rotateRight(target);
				} else {//双旋转
					target = doubleRotateRight(target);
				}
			}

		} else {//同样元素不予理会
		}

		target.height = Math.max(height(target.left), height(target.right)) + 1;
		return target;
	}
	
	/**
	 * 单旋转 左旋转
	 * @param target
	 * @return
	 */
	private AvlNode<T> rotateLeft(AvlNode<T> k2) {
		AvlNode<T> k1 = k2.left;
		k2.left = k1.right;
		k1.right = k2;
		k2.height = Math.max(height(k2.left), height(k2.right)) + 1;
		k1.height = Math.max(height(k1.left), height(k1.right)) + 1;
		return k1;
	}
	
	private AvlNode<T> rotateRight(AvlNode<T> k2) {
		AvlNode<T> k1 = k2.right;
		k2.right = k1.left;
		k1.left = k2;
		k2.height = Math.max(height(k2.left), height(k2.right)) + 1;
		k1.height = Math.max(height(k1.left), height(k1.right)) + 1;
		return k1;
	}
	
	
	private AvlNode<T> doubleRotateLeft(AvlNode<T> k3) {
		k3.left = rotateRight(k3.left);
		return rotateLeft(k3);
	}
	
	private AvlNode<T> doubleRotateRight(AvlNode<T> k3) {
		k3.right = rotateLeft(k3.right);
		return rotateRight(k3);
	}
	
	/**
	 * 先序遍历測试下程序有没有bug
	 * @param node
	 */
	public void preOrder(AvlNode<T> node) {
		System.out.println(node.element);
		if (node.left != null) {
			preOrder(node.left);
		}
		if (node.right != null) {
			preOrder(node.right);
		}
		
	}

	/**
	 * 获取某个节点的高度
	 * 
	 * @param node
	 * @return
	 */
	public int height(AvlNode<T> node) {
		return node == null ? -1 : node.height;
	}
	 
	/**
	 * 节点类。採用静态内部类构造
	 *
	 * @param <T>
	 */
	private static class AvlNode<T> {
		/** 节点存储的数据 。泛型类型。能够存储随意类型的元素 **/
		private T element;
		/** 节点的左孩子 **/
		AvlNode<T> left;
		/** 节点的右孩子 **/
		AvlNode<T> right;
		/** 节点高度。节点为null时为-1, 新插入的节点为0,插入时递归调整父节点的高度 **/
		private int height; 

		public AvlNode(T element, AvlNode<T> leftChild, AvlNode<T> rightChild) {
			this.element = element;
			this.left = leftChild;
			this.right = rightChild;
		}
		
		@Override
		public String toString() {
			return "node:" + this.element + " height:" + height;
		}

	}

}
    原文作者:yfceshi
    原文地址: https://www.cnblogs.com/yfceshi/p/6907901.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞