优先队列(priority_queue)和一般队列(queue)的函数接口一致,不同的是,优先队列每次出列的是整个队列中 最小(或者最大)的元素。 本文简要介绍一种基于数组二叉堆实现的优先队列,定义的数据结构和实现的函数接口说明如下: 一、键值对结构体:KeyValue // =============KeyValue Struct================================== typedef struct key_value_struct KeyValue; struct key_value_struct { int _key; void *_value; }; KeyValue *key_value_new(int key, void *value); void key_value_free(KeyValue *kv, void (*freevalue)(void *)); 键值对作为优先队列的中数据的保存形式,其中key用于保存优先级,_value用于指向实际的数据。 key_value_new用于创建一个KeyValue结构体;key_value_free用于释放一个KeyValue结构体的内存, 参数freevalue用于释放数据指针_value指向的内存。 二、优先队列结构体:PriorityQueue // =============PriorityQueue Struct============================== #define PRIORITY_MAX 1 #define PRIORITY_MIN 2 typedef struct priority_queue_struct PriorityQueue; struct priority_queue_struct { KeyValue **_nodes; int _size; int _capacity; int _priority; }; PriorityQueue *priority_queue_new(int priority); void priority_queue_free(PriorityQueue *pq, void (*freevalue)(void *)); const KeyValue *priority_queue_top(PriorityQueue *pq); KeyValue *priority_queue_dequeue(PriorityQueue *pq); void priority_queue_enqueue(PriorityQueue *pq, KeyValue *kv); int priority_queue_size(PriorityQueue *pq); int priority_queue_empty(PriorityQueue *pq); void priority_queue_print(PriorityQueue *pq); 1) 其中nodes字段是二叉堆数组,_capacity是nodes指向的KeyValue*指针的个数,_size是nodes中实际存储的元素个数。 _priority可以是PRIORITY_MAX或PRIORITY_MIN,分别表示最大元素优先和最小元素优先。 2) priority_queue_new和priority_queue_free分别用于创建和释放优先队列。 3) priority_queue_top用于取得队列头部元素, 4)priority_queue_dequeue用于取得队列头部元素并将元素出列。 其实现的基本思路,以最大优先队列说明如下: ①将队列首部nodes[0]保存作为返回值 ②将队列尾部nodes[_size-1]置于nodes[0]位置,并令_size=_size-1 ③令当前父节点parent(nodes[i])等于新的队列首部(i=0)元素, parent指向元素的儿子节点为left = nodes[2 * i + 1]和rigth = nodes[2 * i + 2], 比较left和right得到优先级高的儿子节点,设为nodes[j](j = 2 *i + 1或2 *i + 2), ④如果当前父节点parent的优先级高于nodes[j],交换nodes[i]和nodes[j],并更新当前父节点, 即令i=j,并循环 ③; 如果当前父节点的优先级低于nodes[j],处理结束。 5)priority_queue_enqueue用于将KeyValue入列 其实现的基本思路,以最大优先队列说明如下: ①设置nodes[_size] 为新的KeyValue,并令_size++ ②令当前儿子节点child(nodes[i])为新的队列尾部节点(i=_size-1),child的父节点parent为nodes[j], 其中j= (i – 1) / 2 ③如果当前儿子节点child的优先级高于parent, 交换nodes[i]和nodes[j],并更新当前儿子节点 即令i = j,并循环③; 如果当前儿子节点的优先级低于parent,处理结束。 6) priority_queue_size用于取得队列中元素个数,priority_queue_empty用于判断队列是否为空。 7)priority_queue_print用于输出队列中的内容。 文件pq.h给出了数据结构和函数的声明,文件pq.c给出了具体实现,main.c文件用于测试。虽然是使用 过程化编程的C语言,可以看到具体的编码中应用了基于对象的思想,我们对数据结构和相关函数做了一定程度的 聚集和封装。 /* *File: pq.h *purpose: declaration of priority queue in C *Author:puresky *Date:2011/04/27 */ #ifndef _PRIORITY_QUEUE_H #define _PRIORITY_QUEUE_H // =============KeyValue Struct================================== typedef struct key_value_struct KeyValue; struct key_value_struct { int _key; void *_value; }; KeyValue *key_value_new(int key, void *value); void key_value_free(KeyValue *kv, void (*freevalue)(void *)); // =============PriorityQueue Struct============================== #define PRIORITY_MAX 1 #define PRIORITY_MIN 2 typedef struct priority_queue_struct PriorityQueue; struct priority_queue_struct { KeyValue **_nodes; int _size; int _capacity; int _priority; }; PriorityQueue *priority_queue_new(int priority); void priority_queue_free(PriorityQueue *pq, void (*freevalue)(void *)); const KeyValue *priority_queue_top(PriorityQueue *pq); KeyValue *priority_queue_dequeue(PriorityQueue *pq); void priority_queue_enqueue(PriorityQueue *pq, KeyValue *kv); int priority_queue_size(PriorityQueue *pq); int priority_queue_empty(PriorityQueue *pq); void priority_queue_print(PriorityQueue *pq); #endif /* *File:pq.c *purpose: definition of priority queue in C *Author:puresky *Date:2011/04/27 */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include “pq.h” //Private Functions static void priority_queue_realloc(PriorityQueue *pq); static void priority_queue_adjust_head(PriorityQueue *pq); static void priority_queue_adjust_tail(PriorityQueue *pq); static int priority_queue_compare(PriorityQueue *pq, int pos1, int pos2); static void priority_queue_swap(KeyValue **nodes, int pos1, int pos2); //Functions of KeyValue Struct KeyValue *key_value_new(int key, void *value) { KeyValue *pkv = (KeyValue *)malloc(sizeof(KeyValue)); pkv->_key = key; pkv->_value = value; return pkv; } void key_value_free(KeyValue *kv, void (*freevalue)(void *)) { if(kv) { if(freevalue) { freevalue(kv->_value); } free(kv); } } //Functions of PriorityQueue Struct PriorityQueue *priority_queue_new(int priority) { PriorityQueue *pq = (PriorityQueue *)malloc(sizeof(PriorityQueue)); pq->_capacity = 11; //default initial value pq->_size = 0; pq->_priority = priority; pq->_nodes = (KeyValue **)malloc(sizeof(KeyValue *) * pq->_capacity); return pq; } void priority_queue_free(PriorityQueue *pq, void (*freevalue)(void *)) { int i; if(pq) { for(i = 0; i < pq->_size; ++i) key_value_free(pq->_nodes[i], freevalue); free(pq->_nodes); free(pq); } } const KeyValue *priority_queue_top(PriorityQueue *pq) { if(pq->_size > 0) return pq->_nodes[0]; return NULL; } KeyValue *priority_queue_dequeue(PriorityQueue *pq) { KeyValue *pkv = NULL; if(pq->_size > 0) { pkv = pq->_nodes[0]; priority_queue_adjust_head(pq); } return pkv; } void priority_queue_enqueue(PriorityQueue *pq, KeyValue *kv) { printf(“add key:%d\n”, kv->_key); pq->_nodes[pq->_size] = kv; priority_queue_adjust_tail(pq); if(pq->_size >= pq->_capacity) priority_queue_realloc(pq); } int priority_queue_size(PriorityQueue *pq) { return pq->_size; } int priority_queue_empty(PriorityQueue *pq) { return pq->_size <= 0; } void priority_queue_print(PriorityQueue *pq) { int i; KeyValue *kv; printf(“data in the pq->_nodes\n”); for(i = 0; i < pq->_size; ++i) printf(“%d “, pq->_nodes[i]->_key); printf(“\n”); printf(“dequeue all data\n”); while(!priority_queue_empty(pq)) { kv = priority_queue_dequeue(pq); printf(“%d “, kv->_key); } printf(“\n”); } static void priority_queue_realloc(PriorityQueue *pq) { pq->_capacity = pq->_capacity * 2; pq->_nodes = realloc(pq->_nodes, sizeof(KeyValue *) * pq->_capacity); } static void priority_queue_adjust_head(PriorityQueue *pq) { int i, j, parent, left, right; i = 0, j = 0; parent = left = right = 0; priority_queue_swap(pq->_nodes, 0, pq->_size – 1); pq->_size–; while(i < (pq->_size – 1) / 2) { parent = i; left = i * 2 + 1; right = left + 1; j = left; if(priority_queue_compare(pq, left, right) > 0) j++; if(priority_queue_compare(pq, parent, j) > 0) { priority_queue_swap(pq->_nodes, i, j); i = j; } else break; } } static void priority_queue_adjust_tail(PriorityQueue *pq) { int i, parent, child; i = pq->_size – 1; pq->_size++; while(i > 0) { child = i; parent = (child – 1) / 2; if(priority_queue_compare(pq, parent, child) > 0) { priority_queue_swap(pq->_nodes, child, parent); i = parent; } else break; } } static int priority_queue_compare(PriorityQueue *pq, int pos1, int pos2) { int adjust = -1; int r = pq->_nodes[pos1]->_key – pq->_nodes[pos2]->_key; if(pq->_priority == PRIORITY_MAX) r *= adjust; return r; } static void priority_queue_swap(KeyValue **nodes, int pos1, int pos2) { KeyValue *temp = nodes[pos1]; nodes[pos1] = nodes[pos2]; nodes[pos2] = temp; } /* *File: main.c *purpose: tesing priority queue in C *Author:puresky *Date:2011/04/27 */ #include <stdio.h> #include <stdlib.h> #include “pq.h” int main(int argc, char **argv) { int i; PriorityQueue *pq = priority_queue_new(PRIORITY_MAX); int a[]={1, 9, 7, 8, 5, 4, 3, 2, 1, 100, 50, 17}; for(i = 0; i < sizeof(a)/ sizeof(int); ++i) { KeyValue *kv = key_value_new(a[i], NULL); priority_queue_enqueue(pq, kv); } priority_queue_print(pq); priority_queue_free(pq, NULL); system(“pause”); return 0; } 转自http://hi.baidu.com/gropefor/blog/item/7d958eb68359cbe230add14e.html |