我们在开发中,有如下场景
a) 关闭空闲连接。服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之。
b) 缓存。缓存中的对象,超过了空闲时间,需要从缓存中移出。
c) 任务超时处理。在网络协议滑动窗口请求应答式交互时,处理超时未响应的请求。
一种笨笨的办法就是,使用一个后台线程,遍历所有对象,挨个检查。这种笨笨的办法简单好用,但是对象数量过多时,可能存在性能问题,检查间隔时间不好设置,间隔时间过大,影响精确度,多小则存在效率问题。而且做不到按超时的时间顺序处理。
这场景,使用DelayQueue最适合了。
DelayQueue是java.util.concurrent中提供的一个很有意思的类。很巧妙,非常棒!但是java doc和Java SE 5.0的source中都没有提供Sample。我最初在阅读ScheduledThreadPoolExecutor源码时,发现DelayQueue的妙用。随后在实际工作中,应用在session超时管理,网络应答通讯协议的请求超时处理。
本文将会对DelayQueue做一个介绍,然后列举应用场景。并且提供一个Delayed接口的实现和Sample代码。
DelayQueue是一个BlockingQueue,其特化的参数是Delayed。(不了解BlockingQueue的同学,先去了解BlockingQueue再看本文)
Delayed扩展了Comparable接口,比较的基准为延时的时间值,Delayed接口的实现类getDelay的返回值应为固定值(final)。DelayQueue内部是使用PriorityQueue实现的。
DelayQueue = BlockingQueue + PriorityQueue + Delayed
DelayQueue的关键元素BlockingQueue、PriorityQueue、Delayed。可以这么说,DelayQueue是一个使用优先队列(PriorityQueue)实现的BlockingQueue,优先队列的比较基准值是时间。
他们的基本定义如下
public interface Comparable<T> { public int compareTo(T o); }
public interface Delayed extends Comparable<Delayed> { long getDelay(TimeUnit unit); }
public class DelayQueue<E extends Delayed> implements BlockingQueue<E> { private final PriorityQueue<E> q = new PriorityQueue<E>(); }
DelayQueue内部的实现使用了一个优先队列PriorityQueue。当调用DelayQueue的offer方法时,把Delayed对象加入到优先队列q PriorityQueue中。如下:
public boolean offer(E e) { final ReentrantLock lock = this.lock; lock.lock(); try { E first = q.peek(); q.offer(e); if (first == null || e.compareTo(first) < 0) available.signalAll(); return true; } finally { lock.unlock(); } }
DelayQueue的take方法,把优先队列q的first拿出来(peek),如果没有达到延时阀值,则进行await处理。如下:
public E take() throws InterruptedException { final ReentrantLock lock = this.lock; lock.lockInterruptibly(); try { for (;;) { E first = q.peek(); if (first == null) { available.await(); } else { long delay = first.getDelay(TimeUnit.NANOSECONDS); if (delay > 0) { long tl = available.awaitNanos(delay); } else { E x = q.poll(); assert x != null; if (q.size() != 0) available.signalAll(); // wake up other takers return x; } } } } finally { lock.unlock(); } }
————–
以下是Delayed的实现
import java.util.concurrent.Delayed; import java.util.concurrent.TimeUnit; import java.util.concurrent.atomic.AtomicLong; public class DelayItem<T> implements Delayed { /** Base of nanosecond timings, to avoid wrapping */ private static final long NANO_ORIGIN = System.nanoTime(); /** * Returns nanosecond time offset by origin */ final static long now() { return System.nanoTime() - NANO_ORIGIN; } /** * Sequence number to break scheduling ties, and in turn to guarantee FIFO order among tied * entries. */ private static final AtomicLong sequencer = new AtomicLong(0); /** Sequence number to break ties FIFO */ private final long sequenceNumber; /** The time the task is enabled to execute in nanoTime units */ private final long time; private final T item; public DelayItem(T submit, long timeout) { this.time = now() + timeout; this.item = submit; this.sequenceNumber = sequencer.getAndIncrement(); } public T getItem() { return this.item; } public long getDelay(TimeUnit unit) { long d = unit.convert(time - now(), TimeUnit.NANOSECONDS); return d; } public int compareTo(Delayed other) { if (other == this) // compare zero ONLY if same object return 0; if (other instanceof DelayItem) { DelayItem x = (DelayItem) other; long diff = time - x.time; if (diff < 0) return -1; else if (diff > 0) return 1; else if (sequenceNumber < x.sequenceNumber) return -1; else return 1; } long d = (getDelay(TimeUnit.NANOSECONDS) - other.getDelay(TimeUnit.NANOSECONDS)); return (d == 0) ? 0 : ((d < 0) ? -1 : 1); } }
以下是Cache的实现,包括了put和get方法,还包括了可执行的main函数。
import java.util.concurrent.ConcurrentHashMap; import java.util.concurrent.ConcurrentMap; import java.util.concurrent.DelayQueue; import java.util.concurrent.TimeUnit; import java.util.logging.Level; import java.util.logging.Logger; public class Cache<K, V> { private static final Logger LOG = Logger.getLogger(Cache.class.getName()); private ConcurrentMap<K, V> cacheObjMap = new ConcurrentHashMap<K, V>(); private DelayQueue<DelayItem<Pair<K, V>>> q = new DelayQueue<DelayItem<Pair<K, V>>>(); private Thread daemonThread; public Cache() { Runnable daemonTask = new Runnable() { public void run() { daemonCheck(); } }; daemonThread = new Thread(daemonTask); daemonThread.setDaemon(true); daemonThread.setName("Cache Daemon"); daemonThread.start(); } private void daemonCheck() { if (LOG.isLoggable(Level.INFO)) LOG.info("cache service started."); for (;;) { try { DelayItem<Pair<K, V>> delayItem = q.take(); if (delayItem != null) { // 超时对象处理 Pair<K, V> pair = delayItem.getItem(); cacheObjMap.remove(pair.first, pair.second); // compare and remove } } catch (InterruptedException e) { if (LOG.isLoggable(Level.SEVERE)) LOG.log(Level.SEVERE, e.getMessage(), e); break; } } if (LOG.isLoggable(Level.INFO)) LOG.info("cache service stopped."); } // 添加缓存对象 public void put(K key, V value, long time, TimeUnit unit) { V oldValue = cacheObjMap.put(key, value); if (oldValue != null) q.remove(key); long nanoTime = TimeUnit.NANOSECONDS.convert(time, unit); q.put(new DelayItem<Pair<K, V>>(new Pair<K, V>(key, value), nanoTime)); } public V get(K key) { return cacheObjMap.get(key); } // 测试入口函数 public static void main(String[] args) throws Exception { Cache<Integer, String> cache = new Cache<Integer, String>(); cache.put(1, "aaaa", 3, TimeUnit.SECONDS); Thread.sleep(1000 * 2); { String str = cache.get(1); System.out.println(str); } Thread.sleep(1000 * 2); { String str = cache.get(1); System.out.println(str); } } }
运行Sample,main函数执行的结果是输出两行,第一行为aaa,第二行为null。