#杨辉三角,后面补1,中间计算累加次数
n = 6
triangle = []
for i in range(n):
row = [1]
triangle.append(row)
if i == 0:
continue
pre = triangle[i-1]
for j in range(1,i):
row.append(pre[j-1]+pre[j])
row.append(1)
print(triangle)
#杨辉三角,后补零,前面用负索引[-1]
n = 6
row = [1]
print(row)
for i in range(1,n):
nextRow = []
row.append(0)
for j in range(i+1):
nextRow.append(row[j-1]+row[j])
print(nextRow)
row = nextRow
#杨辉三角,每一行一次创建,对称性
n = 6
triangle = []
for i in range(n):
row = [1]*(i+1)
triangle.append(row)
pre = triangle[i-1]
for j in range(1,i//2+1):
val = pre[j-1]+pre[j]
row[j] = val
if j != 2*i:
row[-j-1] = val
print(triangle)
#杨辉三角,只创建一行,最大行,在原有基础上更改,对称性赋值,最后切片
n = 6
row = [1]*n
for i in range(n):
z = 1
for j in range(1,i):
if j <= i//2:
row[j],z =z+row[j],row[j]
else:
row[j] = row[-j-n+i]
print(row[:i+1])
#杨辉三角,只创建一行,最大行,在原有基础上更改,对称性,一次循环赋值两次,减少循环次数,最后切片
n = 6
row = [1]*n
for i in range(n):
z = 1
for j in range(1,i//2+1):
row[j],z = row[j] + z,row[j]
if j != 2*i:
row[-j-n+i] = row[j]
print(row[:i+1])