本文出自:http://blog.csdn.net/svitter
括号匹配一:http://acm.nyist.net/JudgeOnline/problem.php?pid=2
括号匹配二:http://acm.nyist.net/JudgeOnline/problem.php?pid=15
之前被这个题目难住,现在看动态规划就顺便过来AC了它。结果发现当年被难住一点也不丢人。。
括号匹配一很简单,就是栈的应用,AC代码:
//============================================================================
// Name : 括号匹配.cpp
// Author :
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================
#include <iostream>
#include <cstdio>
#include <string.h>
#include <stack>
using namespace std;
void ace(){
int n;
scanf("%d", &n);
char ch;
char tmp;
ch = getchar();
while(n --){
stack <char> s;
while((ch = getchar())!= '\n'){
if(s.empty())
s.push(ch);
else{
tmp = s.top();
if(tmp == '(' && ch == ')')
s.pop();
else if(tmp == '[' && ch == ']')
s.pop();
else
s.push(ch);
}
}
if(s.empty())
printf("Yes\n");
else
printf("No\n");
}
}
int main() {
ace();
return 0;
}
第二道就是DP题目了- –
真心被难住了。下面分析一下:
通过分析(别问我怎么分析的,画多了就看出来了- -)这必定是一个通过区间括号求和计算出的最小匹配括号值。
dp方程: dp [ i ] [ j ] = min ( dp [ i ] [ j ] , dp [ i ] [ k ] + dp [ k + 1 ] [ j ] );
dp[ i ][ j ] 表示当前匹配最小的括号值。后来发现这个不是正确的- -。因为这个阶段值与另一个阶段值会相互影响,违反了条件。
有重新做了分析:
发现无非就是这么几种情况:
” ..[ … ] ” + ” ] “
” ..[ … [ ” + ” ] “
” ..[ … ] ” + ” [ “
” ..[ … [ ” + ” [ “
这么四种情况。
如果假设dp [ i ] [ j ] = dp [ i ] [ j – 1 ] + 1
那么不符合情况的有第一种和第二种。而这两种情况就是因为中间串中有能够与最新加入的str[j]匹配的串。所以,当出现匹配串时,寻找最佳的匹配方案 ——dp [ i ] [ j ] = min ( dp [ i ] [ j ] , dp [ i ] [ k – 1 ] + dp [ k + 1 ] [ j – 1 ] );就是去除了两个括号,求括号里面的部分和括号外面部分的最小值。
特别的,为了针对 j == i + 1的情况, dp [ i ] [ j ] = min ( dp [ i ] [ j ], dp [ i + 1] [ k – 1 ] + dp [ k + 1 ] [ j ])是不成立的。
AC代码:
//============================================================================
// Name : 括号匹配.cpp
// Author :
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================
#include <iostream>
#include <cstdio>
#include <string.h>
#include <stack>
using namespace std;
#define min(a, b) a > b ? b : a
int dp[102][102];
char str[1001];
bool match(int i, int j)
{
if (str[i] == '(' && str[j] == ')')
return true;
else if (str[i] == '[' && str[j] == ']')
return true;
else
return false;
}
void ace()
{
//case
int c;
scanf("%d", &c);
getchar();
//work point
int i, j, k;
//value
int n;
while (c--)
{
scanf("%s", str + 1); //此处可以尝试a+1
memset(dp, 0, sizeof(dp));
n = strlen(str + 1);
//区间为差值为0时,必定需要一个括号匹配
for (i = 1; i <= n; i++)
dp[i][i] = 1;
for (j = 2; j <= n; j++) // j = 2...n
for (i = j - 1; i >= 1; i--) // i = j...1
{
dp[i][j] = dp[i][j-1] + 1;
for (k = i; k < j; k++) //k = i+1...j-1
{
if(match(k, j))
{
dp[i][j] = min(dp[i][j], dp[i][k-1] + dp[k + 1][j - 1]);
}
}
}
printf("%d\n", dp[1][n]);
}
}
int main()
{
ace();
return 0;
}
后来依据http://blog.csdn.net/svitter/article/details/25186367
重写了代码,解题思路可以看上述题目。
//============================================================================
// Name : test.cpp
// Author :
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================
//============================================================================
// Name : 动态规划.cpp
// Author : blog.csdn.net/svitter
// Version :
// Copyright : Your copyright notice
// Description : Hello World in C++, Ansi-style
//============================================================================
#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
#define MAXN 256
char br[MAXN];
int dp[MAXN][MAXN], pos[MAXN][MAXN];
int len;
bool match(int i, int j) {
if (br[i] == '(' && br[j] == ')')
return true;
if (br[i] == '[' && br[j] == ']')
return true;
return false;
}
int main() {
//work pit
int i, j, k, mid, t;
int Case;
scanf("%d", &Case);
getchar();
while (Case--) {
while (gets(br) != NULL) {
memset(dp, 0, sizeof(dp));
len = strlen(br);
for (i = 0; i < len; i++)
dp[i][i] = 1;
for (k = 1; k < len; k++) {
for (i = 0; i + k < len; i++) {
j = i + k;
dp[i][j] = 0x7fffffff;
if (match(i, j)) { //如果当前位置匹配,那么pos置-1
dp[i][j] = dp[i + 1][j - 1], pos[i][j] = -1;
}
for (mid = i; mid < j; mid++) {
if (dp[i][j] > (t = dp[i][mid] + dp[mid + 1][j])) { //如果存在更优分解,那么选择更优分解
dp[i][j] = t, pos[i][j] = mid;
}
}
}
}
printf("%d\n", dp[0][len - 1]);
}
}
return 0;
}