传送门:题目
题意:
一共有n种牌,每张牌出现的概率都相等,每张牌需要花费W元,求收集到所有牌需要花费多少元。
题解:
我们先考虑需要购买几次才能收集到所有种类的牌:
Cnt=n∗∑ni=11i C n t = n ∗ ∑ i = 1 n 1 i
不懂上面期望公式的可以去看这篇博客:期望公式_洛谷P1291
好了,现在我们知道了购买的次数,那么乘以每次购买的费用,就是答案了:
Ans=W∗Cnt=(n−1)!∗Cnt A n s = W ∗ C n t = ( n − 1 ) ! ∗ C n t
化简一下,最终Ans:
Ans=n!∗∑ni=11i A n s = n ! ∗ ∑ i = 1 n 1 i
而n的范围是 [1,3000] [ 1 , 3000 ] ,显然,n的阶乘会爆long long,所以我们要套个大整数板子。
AC代码:
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#define debug(x) cout<<#x<<" = "<<x<<endl;
#define INF 0x3f3f3f3f
using namespace std;
/**************************大整数模板*******************************/
#define MAXN 9999
#define MAXSIZE 1010
#define DLEN 4
class BigNum {
private:
int a[3010]; //可以控制大数的位数
int len;
public:
BigNum() {len = 1; memset(a, 0, sizeof(a));} //构造函数
BigNum(const int); //将一个 int 类型的变量转化成大数
BigNum(const char*); //将一个字符串类型的变量转化为大数
BigNum(const BigNum &); //拷贝构造函数
BigNum &operator=(const BigNum &); //重载赋值运算符,大数之间进行赋值运算
friend istream& operator>>(istream&, BigNum&); //重载输入运算符
friend ostream& operator<<(ostream&, BigNum&); //重载输出运算符
BigNum operator+(const BigNum &)const; //重载加法运算符,两个大数之间的的相加运算
BigNum operator - (const BigNum &)const; //重载减法运算符,两个大数之间的的相减运算
BigNum operator*(const BigNum &)const; //重载乘法运算符,两个大数之间的的相乘运算
BigNum operator/(const int &)const; //重载除法运算符,大数对一个整数进行相除运算
BigNum operator^(const int &)const; //大数的 n 次方运算
int operator%(const int &)const; //大数对一个类型的变量进行取模运算int
bool operator>(const BigNum &T)const; //大数和另一个大数的大小比较
bool operator>(const int &t)const; //大数和一个 int 类型的变量大小比较
void print(); //输出大数
};
//将一个 int 类型的变量转化为大数
BigNum::BigNum(const int b) {
int c, d = b;
len = 0;
memset(a, 0, sizeof(a));
while (d > MAXN) {
c = d - (d / (MAXN + 1)) * (MAXN + 1);
d = d / (MAXN + 1);
a[len++] = c;
}
a[len++] = d;
}
//将一个字符串类型的变量转化为大数
BigNum::BigNum(const char *s) {
int t, k, index, L, i;
memset(a, 0, sizeof(a));
L = strlen(s);
len = L / DLEN;
if (L % DLEN)len++;
index = 0;
for (i = L - 1; i >= 0; i -= DLEN) {
t = 0;
k = i - DLEN + 1;
if (k < 0)k = 0;
for (int j = k; j <= i; j++)
t = t * 10 + s[j] - '0';
a[index++] = t;
}
}
//拷贝构造函数
BigNum::BigNum(const BigNum &T): len(T.len) {
int i;
memset(a, 0, sizeof(a));
for (i = 0; i < len; i++)
a[i] = T.a[i];
}
//重载赋值运算符,大数之间赋值运算
BigNum & BigNum::operator=(const BigNum &n) {
int i;
len = n.len;
memset(a, 0, sizeof(a));
for (i = 0; i < len; i++)
a[i] = n.a[i];
return *this;
}
istream& operator>>(istream &in, BigNum &b) {
char ch[MAXSIZE * 4];
int i = - 1;
in >> ch;
int L = strlen(ch);
int count = 0, sum = 0;
for (i = L - 1; i >= 0;) {
sum = 0;
int t = 1;
for (int j = 0; j < 4 && i >= 0; j++, i--, t *= 10) {
sum += (ch[i] - '0') * t;
}
b.a[count] = sum;
count++;
}
b.len = count++;
return in;
}
//重载输出运算符
ostream& operator<<(ostream& out, BigNum& b) {
int i;
cout << b.a[b.len - 1];
for (i = b.len - 2; i >= 0; i--) {
printf("%04d", b.a[i]);
}
return out;
}
//两个大数之间的相加运算
BigNum BigNum::operator+(const BigNum &T)const {
BigNum t(*this);
int i, big;
big = T.len > len ? T.len : len;
for (i = 0; i < big; i++) {
t.a[i] += T.a[i];
if (t.a[i] > MAXN) {
t.a[i + 1]++;
t.a[i] -= MAXN + 1;
}
}
if (t.a[big] != 0)
t.len = big + 1;
else t.len = big;
return t;
}
//两个大数之间的相减运算
BigNum BigNum::operator - (const BigNum &T)const {
int i, j, big;
bool flag;
BigNum t1, t2;
if (*this > T) {
t1 = *this;
t2 = T;
flag = 0;
}
else {
t1 = T;
t2 = *this;
flag = 1;
}
big = t1.len;
for (i = 0; i < big; i++) {
if (t1.a[i] < t2.a[i]) {
j = i + 1;
while (t1.a[j] == 0)
j++;
t1.a[j--]-- ;
while (j > i)
t1.a[j--] += MAXN;
t1.a[i] += MAXN + 1 - t2.a[i];
}
else t1.a[i] -= t2.a[i];
}
t1.len = big;
while (t1.a[t1.len - 1] == 0 && t1.len > 1) {
t1.len --;
big --;
}
if (flag)
t1.a[big - 1] = 0 - t1.a[big - 1];
return t1;
}
//两个大数之间的相乘
BigNum BigNum::operator*(const BigNum &T)const {
BigNum ret;
int i, j, up;
int temp, temp1;
for (i = 0; i < len; i++) {
up = 0;
for (j = 0; j < T.len; j++) {
temp = a[i] * T.a[j] + ret.a[i + j] + up;
if (temp > MAXN) {
temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
up = temp / (MAXN + 1);
ret.a[i + j] = temp1;
}
else {
up = 0;
ret.a[i + j] = temp;
}
}
if (up != 0)
ret.a[i + j] = up;
}
ret.len = i + j;
while (ret.a[ret.len - 1] == 0 && ret.len > 1)ret.len-- ;
return ret;
}
//大数对一个整数进行相除运算
BigNum BigNum::operator/(const int &b)const {
BigNum ret;
int i, down = 0;
for (i = len - 1; i >= 0; i-- ) {
ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
}
ret.len = len;
while (ret.a[ret.len - 1] == 0 && ret.len > 1)
ret.len-- ;
return ret;
}
//大数对一个 int 类型的变量进行取模
int BigNum::operator%(const int &b)const {
int i, d = 0;
for (i = len - 1; i >= 0; i-- )
d = ((d * (MAXN + 1)) % b + a[i]) % b;
return d;
}
//大数的 n 次方运算
BigNum BigNum::operator^(const int &n)const {
BigNum t, ret(1);
int i;
if (n < 0)exit( - 1);
if (n == 0)return 1;
if (n == 1)return *this;
int m = n;
while (m > 1) {
t = *this;
for (i = 1; (i << 1) <= m; i <<= 1)
t = t * t;
m -= i;
ret = ret * t;
if (m == 1)ret = ret * (*this);
}
return ret;
}
//大数和另一个大数的大小比较
bool BigNum::operator>(const BigNum &T)const {
int ln;
if (len > T.len)return true;
else if (len == T.len) {
ln = len - 1;
while (a[ln] == T.a[ln] && ln >= 0)
ln--;
if (ln >= 0 && a[ln] > T.a[ln])
return true;
else
return false;
}
else
return false;
}
//大数和一个 int 类型的变量的大小比较
bool BigNum::operator>(const int &t)const {
BigNum b(t);
return *this > b;
}
//输出大数
void BigNum::print() {
int i;
printf("%d", a[len - 1]);
for (i = len - 2; i >= 0; i-- )
printf("%04d", a[i]);
printf("\n");
}
/**************************大整数模板*******************************/
int main(void) {
int T;
cin >> T;
while (T--) {
int n;
cin >> n;
BigNum factorial=1, ans;
for (int i = 1; i <= n; i++){
factorial = factorial * i;
// debug(factorial);
}
for (int i = 1; i <= n; i++)
ans = ans + factorial / i;
cout << ans << ".0" << endl;
}
return 0;
}