图灵停机问题(The Halting Problem)

不存在这样一个程序(算法),它能够计算任何程序(算法)在给定输入上是否会结束(停机)。

那么,如何来证明这个停机问题呢?

反证!假设我们某一天真做出了这么一个极度聪明的万能算法(就叫God_algo吧),你只要给它一段程序(二进制描述),再给它这段程序的输入,它就能告诉你这段程序在这个输入上会不会结束(停机),我们来编写一下我们的这个算法吧:

bool God_algo(char* program, char* input)

{

    if(<program> halts on <input>)

        return true;

    return false;

}

这里我们假设if的判断语句里面是你天才思考的结晶,它能够像上帝一样洞察一切程序的宿命。现在,我们从这个God_algo出发导出一个新的算法:

bool Satan_algo(char* program)

{

if( God_algo(program, program) )

{

       while(1);        // loop forever!

       return false;   // can never get here!

}

else

       return true;

}

正如它的名字所暗示的那样,这个算法便是一切邪恶的根源了。当我们把这个算法运用到它自身身上时,会发生什么呢?

Satan_algo(Satan_algo);

我们来分析一下这行简单的调用:

显然,Satan_algo(Satan_algo)这个调用要么能够运行结束返回(停机),要么不能返回(loop forever)。

如果它能够结束,那么Santa_algo算法里面的那个if判断就会成立(因为God_algo(Santa_algo,Santa_algo)将会返回true),从而程序便进入那个包含一个无穷循环while(1);的if分支,于是这个Satan_algo(Satan_algo)调用便永远不会返回(结束)了。

如果不能结束(停机),则if判断就会失败,从而选择另一个if分支并返回true,即Satan_algo(Satan_algo)又能够返回(停机)。

总之,我们有:

Satan_algo(Satan_algo)能够停机=> 它不能停机

Satan_algo(Satan_algo)不能停机=> 它能够停机

所以它停也不是,不停也不是,左右矛盾。

    原文作者:银行家问题
    原文地址: https://blog.csdn.net/niushuai666/article/details/7260957
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞