特征选择的三种方法介绍:
过滤型:
选择与目标变量相关性较强的特征。缺点:忽略了特征之间的关联性。
包裹型:
基于线性模型相关系数以及模型结果AUC逐步剔除特征。如果剔除相关系数绝对值较小特征后,AUC无大的变化,或降低,则可剔除
嵌入型:
利用模型提取特征,一般基于线性模型与正则化(正则化取L1),取权重非0的特征。(特征纬度特别高,特别稀疏,用svd,pca算不动)
python 实现
"""1.过滤型"""
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
iris=load_iris()
X,y=iris.data,iris.target
print X.shape
X_new=SelectKBest(chi2,k=2).fit_transform(X,y)
print X_new.shape
"""输出: (150L, 4L) (150L, 2L)"""
"""2.包裹型"""
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression
from sklearn.datasets import load_boston
boston=load_boston()
X=boston["data"]
Y=boston["target"]
names=boston["feature_names"]
lr=LinearRegression()
rfe=RFE(lr,n_features_to_select=1)#选择剔除1个
rfe.fit(X,Y)
print "features sorted by their rank:"
print sorted(zip(map(lambda x:round(x,4), rfe.ranking_),names))
"""输出:按剔除后AUC排名给出 features sorted by their rank: [(1.0, 'NOX'), (2.0, 'RM'), (3.0, 'CHAS'), (4.0, 'PTRATIO'), (5.0, 'DIS'), (6.0, 'LSTAT'), (7.0, 'RAD'), (8.0, 'CRIM'), (9.0, 'INDUS'), (10.0, 'ZN'), (11.0, 'TAX') , (12.0, 'B'), (13.0, 'AGE')]"""
"""3.嵌入型 ,老的版本没有SelectFromModel"""
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectFromModel
iris=load_iris()
X,y=iris.data,iris.target
print X.shape
lsvc=LinearSVC(C=0.01,penalty='l1',dual=False).fit(X,y)
model=SelectFromModel(lsvc,prefit=True)
X_new=model.transform(X)
print X_new.shape
"""输出: (150,4) (150,3) """