向量(Vector) 在几乎所有的几何问题中,向量(有时也称矢量)是一个基本点。向量的定义包含方向和一个数(长度)。在二维空间中,一个向量可以用一对x和y来表示。例如由点(1,3)到(5,1的向量可以用(4,-2)来表示。这里大家要特别注意,我这样说并不代表向量定义了起点和终点。向量仅仅定义方向和长度。 向量加法 向量也支持各种数学运算。最简单的就是加法。我们可以对两个向量相加,得到的仍然是一个向量。我们有: V1(x1, y1)+V2(x2, y2)=V3(x1+x2, y1+y2) 下图表示了四个向量相加。注意就像普通的加法一样,相加的次序对结果没有影响(满足交换律),减法也是一样的。 点乘(Dot Product) 如果说加法是凭直觉就可以知道的,另外还有一些运算就不是那么明显的,比如点乘和叉乘。 点乘比较简单,是相应元素的乘积的和: V1( x1, y1) V2(x2, y2) = x1*x2 + y1*y2 注意结果不是一个向量,而是一个标量(Scalar)。点乘有什么用呢,我们有: A B = |A||B|Cos(θ) θ是向量A和向量B见的夹角。这里|A|我们称为向量A的模(norm),也就是A的长度, 在二维空间中就是|A| = sqrt(x2+y2)。这样我们就和容易计算两条线的夹角: Cos(θ) = A B /(|A||B|) 当然你知道要用一下反余弦函数acos()啦。(回忆一下cos(90)=0 和cos(0) = 1还是有好处的,希望你没有忘记。)这可以告诉我们如果点乘的结果,简称点积,为0的话就表示这两个向量垂直。当两向量平行时,点积有最大值 另外,点乘运算不仅限于2维空间,他可以推广到任意维空间。(译注:不少人对量子力学中的高维空间无法理解,其实如果你不要试图在视觉上想象高维空间,而仅仅把它看成三维空间在数学上的推广,那么就好理解了) 叉乘(cross product) 相对于点乘,叉乘可能更有用吧。2维空间中的叉乘是: V1(x1, y1) X V2(x2, y2) = x1y2 – y1x2 看起来像个标量,事实上叉乘的结果是个向量,方向在z轴上。上述结果是它的模。在二维空间里,让我们暂时忽略它的方向,将结果看成一个向量,那么这个结果类似于上述的点积,我们有: A x B = |A||B|Sin(θ) 然而角度 θ和上面点乘的角度有一点点不同,他是有正负的,是指从A到B的角度。下图中 θ为负。 另外还有一个有用的特征那就是叉积的绝对值就是A和B为两边说形成的平行四边形的面积。也就是AB所包围三角形面积的两倍。在计算面积时,我们要经常用到叉积。 (译注:三维及以上的叉乘参看维基:http://en.wikipedia.org/wiki/Cross_product) 点–线距离 找出一个点和一条线间的距离是经常遇见的几何问题之一。假设给出三个点,A,B和C,你想找出点C到点A、B定出的直线间距离。第一步是找出A到B的向量AB和A到C的向量AC,现在我们用该两向量的叉积除以|AB|,这就是我们要找的的距离了(下图中的红线)。 d = (AB x AC)/|AB|
如果你有基础的高中几何知识,你就知道原因了。上一节我们知道(AB X AC)/2是三角形ABC的面积,这个三角形的底是|AB|,高就是C到AB的距离。有时叉积得到的是一个负值,这种情况下距离就是上述结果的绝对值。 当我们要找点到线段的距离时,情况变得稍稍复杂一些。这时线段与点的最短距离可能是点到线段的某一端点,而不是点到直线的垂线。例如上图中点C到线段AB的最短距离应该是线段BC。我们有集中不同的方法来判断这种特殊情况。第一种情况是计算点积AB Bc来判定两线段间夹角。如果点积大于等于零,那么表示AB到BC是在-90到90度间,也就是说C到AB的垂线在AB外,那么AB上到C距离最近的点就是B。同样,如果BAAC大于等于零,那么点A就是距离C最近的点。如果两者均小于零,那么距离最近的点就在线段AB中的莫一点。 源代码参考如下: //Compute the dot product AB BC int dot(int[] A, int[] B, int[] C){ AB = new int[2]; BC = new int[2]; AB[0] = B[0]-A[0]; AB[1] = B[1]-A[1]; BC[0] = C[0]-B[0]; BC[1] = C[1]-B[1]; int dot = AB[0] * BC[0] + AB[1] * BC[1]; return dot; } //Compute the cross product AB x AC int cross(int[] A, int[] B, int[] C){ AB = new int[2]; AC = new int[2]; AB[0] = B[0]-A[0]; AB[1] = B[1]-A[1]; AC[0] = C[0]-A[0]; AC[1] = C[1]-A[1]; int cross = AB[0] * AC[1] – AB[1] * AC[0]; return cross; } //Compute the distance from A to B double distance(int[] A, int[] B){ int d1 = A[0] – B[0]; int d2 = A[1] – B[1]; return sqrt(d1*d1+d2*d2); } //Compute the distance from AB to C //if isSegment is true, AB is a segment, not a line. double linePointDist(int[] A, int[] B, int[] C, boolean isSegment){ double dist = cross(A,B,C) / distance(A,B); if(isSegment){ int dot1 = dot(A,B,C); if(dot1 > 0)return distance(B,C); int dot2 = dot(B,A,C); if(dot2 > 0)return distance(A,C); } return abs(dist); } 上面的代码看起来似乎是很繁琐。不过我们可以看看在C++和C#中,采用了运算符重载的类point,用‘*’代表点乘,用‘^’代表叉乘(当然‘+”-‘还是你所希望的),那么看起来就简单些,代码如下: //Compute the distance from AB to C //if isSegment is true, AB is a segment, not a line. double linePointDist(point A, point B, point C, bool isSegment){ double dist = ((B-A)^(C-A)) / sqrt((B-A)*(B-A)); if(isSegment){ int dot1 = (C-B)*(B-A); if(dot1 > 0)return sqrt((B-C)*(B-C)); int dot2 = (C-A)*(A-B); if(dot2 > 0)return sqrt((A-C)*(A-C)); } return abs(dist); } |