字符串,数据结构中的串存储结构

1. 串是什么,串存储结构的3种实现方法

数据结构中,字符串要单独用一种存储结构来存储,称为串存储结构。这里的串指的就是字符串。

严格意义上讲,串存储结构也是一种线性存储结构,因为字符串中的字符之间也具有”一对一”的逻辑关系。只不过,与之前所学的线性存储结构不同,串结构只用于存储字符类型的数据。

无论学习哪种编程语言,操作最多的总是字符串。数据结构中,根据串中存储字符的数量及特点,对一些特殊的串进行了命名,比如说:

空串:存储 0 个字符的串,例如 S = “”(双引号紧挨着);

空格串:只包含空格字符的串,例如 S = ” “(双引号包含 5 个空格);

子串和主串:假设有两个串 a 和 b,如果 a 中可以找到几个连续字符组成的串与 b 完全相同,则称 a 是 b 的主串,b 是 a 的子串。例如,若 a = “shujujiegou”,b = “shuju”,由于 a 中也包含 “shuju”,因此串 a 和串 b 是主串和子串的关系;

需要注意的是,空格串和空串不同,空格串中含有字符,只是都是空格而已。另外,只有串 b 整体出现在串 a 中,才能说 b 是 a 的子串,比如 “shujiejugou” 和 “shuju” 就不是主串和子串的关系。

另外,对于具有主串和子串关系的两个串,通常会让你用算法找到子串在主串的位置。子串在主串中的位置,指的是子串首个字符在主串中的位置。

例如,串 a = “shujujiegou”,串 b = “jiegou”,通过观察,可以判断 a 和 b 是主串和子串的关系,同时子串 b 位于主串 a 中第 6 的位置,因为在串 a 中,串 b 首字符 ‘j’ 的位置是 6。

本章,我们会学习两种模式匹配算法专门解决此类问题。

串存储结构的具体实现

存储一个字符串,数据结构包含以下 3 种具体存储结构:

定长顺序存储:实际上就是用普通数组(又称静态数组)存储。例如 C 语言使用普通数据存储字符串的代码为 char a[20] = “data.biancheng.net”;

堆分配存储:用动态数组存储字符串;

块链存储:用链表存储字符串;

以上 3 种存储结构会在后续文章中作详细介绍。

2. 串的定长顺序存储结构

我们知道,顺序存储结构(顺序表)的底层实现用的是数组,根据创建方式的不同,数组又可分为静态数组和动态数组,因此顺序存储结构的具体实现其实有两种方式。

通常所说的数组都指的是静态数组,如 str[10],静态数组的长度是固定的。与静态数组相对应的,还有动态数组,它使用 malloc 和 free 函数动态申请和释放空间,因此动态数组的长度是可变的。

串的定长顺序存储结构,可以简单地理解为采用 “固定长度的顺序存储结构” 来存储字符串,因此限定了其底层实现只能使用静态数组。

使用定长顺序存储结构存储字符串时,需结合目标字符串的长度,预先申请足够大的内存空间。

例如,采用定长顺序存储结构存储 “data.biancheng.net”,通过目测得知此字符串长度为 18,因此我们申请的数组空间长度至少为 19(最后一位存储字符串的结束标志 ‘\0’),用 C 语言表示为:

char str[19] = "data.biancheng.net";

下面这段 C 语言代码给大家完美地展示了使用定长顺序存储结构存储字符串:

#include<stdio.h>
int main()
{
    char str[19]="data.biancheng.net";
    printf("%s\n",str);
    return 0;
}

根据实际情况,实现代码可包含一些函数,用于实现某些具体功能,如求字符串的长度等,由于这些知识都是学习编程语言的基础内容,因此不再过多赘述。

3. 串的堆分配存储结构

串的堆分配存储,其具体实现方式是采用动态数组存储字符串。

通常,编程语言会将程序占有的内存空间分成多个不同的区域,程序包含的数据会被分门别类并存储到对应的区域。拿 C 语言来说,程序会将内存分为 4 个区域,分别为堆区、栈区、数据区和代码区,其中的堆区是本节所关注的。

与其他区域不同,堆区的内存空间需要程序员手动使用 malloc 函数申请,并且在不用后要手动通过 free 函数将其释放。

C 语言中使用 malloc 函数最多的场景是给数组分配空间,这类数组称为动态数组。例如:

char * a = (char*)malloc(5*sizeof(char));

此行代码创建了一个动态数组 a,通过使用 malloc 申请了 5 个 char 类型大小的堆存储空间。

动态数组相比普通数组(静态数组)的优势是长度可变,换句话说,根据需要动态数组可额外申请更多的堆空间(使用 relloc 函数):

a = (char*)realloc(a, 10*sizeof(char));

通过使用这行代码,之前具有 5 个 char 型存储空间的动态数组,其容量扩大为可存储 10 个 char 型数据。

下面给大家举一个完整的示例,以便对串的堆分配存储有更清楚地认识。该程序可实现将两个串(“data.bian” 和 “cheng.net”)合并为一个串:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
int main()
{
    char * a1 = NULL;
    char * a2 = NULL;
    a1 = (char*)malloc(10 * sizeof(char));
    strcpy(a1, "data.bian");//将字符串"data.bian"复制给a1
    a2 = (char*)malloc(10 * sizeof(char));
    strcpy(a2, "cheng.net");
    int lengthA1 = strlen(a1);//a1串的长度
    int lengthA2 = strlen(a2);//a2串的长度
    //尝试将合并的串存储在 a1 中,如果 a1 空间不够,则用realloc动态申请
    if (lengthA1 < lengthA1 + lengthA2) {
        a1 = (char*)realloc(a1, (lengthA1 + lengthA2+1) * sizeof(char));
    }
    //合并两个串到 a1 中
    for (int i = lengthA1; i < lengthA1 + lengthA2; i++) {
        a1[i] = a2[i - lengthA1];
    }
    //串的末尾要添加 \0,避免出错
    a1[lengthA1 + lengthA2] = '\0';
    printf("%s", a1);
    //用完动态数组要立即释放
    free(a1);
    free(a2);
    return 0;
}

程序运行结果:

data.biancheng.net

注意,程序中给 a1 和 a2 赋值时,使用了 strcpy 复制函数。这里不能直接用 a1 =“data.biancheng”,程序编译会出错,报错信息为 “没有 malloc 的空间不能 free”。因为 strcpy 函数是将字符串复制到申请的存储空间中,而直接赋值是字符串存储在别的内存空间(本身是一个常量,放在数据区)中,更改了指针 a1 和 a2 的指向,也就是说,之前动态申请的存储空间虽然申请了,结果还没用呢就丢了。

4. 串的块链存储结构

串的块链存储,指的是使用链表结构存储字符串。

本节实现串的块链存储使用的是无头节点的单链表。当然根据实际需要,你也可以自行决定所用链表的结构(双向链表还是单链表,有无头节点)。

我们知道,单链表中的 “单” 强调的仅仅是链表各个节点只能有一个指针,并没有限制数据域中存储数据的具体个数。因此在设计链表节点的结构时,可以令各节点存储多个数据。

例如,图 1 所示是用链表存储字符串 shujujiegou,该链表各个节点中可存储 1 个字符:

《字符串,数据结构中的串存储结构》

图 1 各节点仅存储 1 个数据元素的链表

同样,图 2 设置的链表各节点可存储 4 个字符:

《字符串,数据结构中的串存储结构》

图 2 各节点可存储 4 个数据元素的链表

从图 2 可以看到,使用链表存储字符串,其最后一个节点的数据域不一定会被字符串全部占满,对于这种情况,通常会用 ‘#’ 或其他特殊字符(能与字符串区分开就行)将最后一个节点填满。

初学者可能会问,使用块链结构存储字符串时,怎样确定链表中节点存储数据的个数呢?

链表各节点存储数据个数的多少可参考以下几个因素:

串的长度和存储空间的大小:若串包含数据量很大,且链表申请的存储空间有限,此时应尽可能的让各节点存储更多的数据,提高空间的利用率(每多一个节点,就要多申请一个指针域的空间);反之,如果串不是特别长,或者存储空间足够,就需要再结合其他因素综合考虑;

程序实现的功能:如果实际场景中需要对存储的串做大量的插入或删除操作,则应尽可能减少各节点存储数据的数量;反之,就需要再结合其他因素。

以上两点仅是目前想到影响节点存储数据个数的因素,在实际场景中,还需结合实现环境综合分析。

这里给出一个实现串的块链存储的 C 语言程序,以加深初学者对此字符串存储方式的认识:

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define linkNum 3//全局设置链表中节点存储数据的个数
typedef struct Link {
    char a[linkNum]; //数据域可存放 linkNum 个数据
    struct Link * next; //代表指针域,指向直接后继元素
}link; // nk为节点名,每个节点都是一个 link 结构体
link * initLink(link * head, char * str);
void displayLink(link * head);
int main()
{
    link * head = NULL;
    head = initLink(head, "data.biancheng.net");
    displayLink(head);
    return 0;
}
//初始化链表,其中head为头指针,str为存储的字符串
link * initLink(link * head, char * str) {
    int length = strlen(str);
    //根据字符串的长度,计算出链表中使用节点的个数
    int num = length/linkNum;
    if (length%linkNum) {
        num++;
    }
    //创建并初始化首元节点
    head = (link*)malloc(sizeof(link));
    head->next = NULL;
    link *temp = head;
    //初始化链表
    for (int i = 0; i<num; i++)
    {
        int j = 0;
        for (; j<linkNum; j++)
        {
            if (i*linkNum + j < length) {
                temp->a[j] = str[i*linkNum + j];
            }          
            else
                temp->a[j] = '#';
        }
        if (i*linkNum + j < length)
        {
            link * newlink = (link*)malloc(sizeof(link));
            newlink->next = NULL;
            temp->next = newlink;
            temp = newlink;
        }
    }
    return head;
}
//输出链表
void displayLink(link * head) {
    link * temp = head;
    while (temp) {
        for (int i = 0; i < linkNum; i++) {
            printf("%c", temp->a[i]);
        }
        temp = temp->next;
    }
}

程序输出结果为:

data.biancheng.net

5. BF算法(串模式匹配算法)C语言详解

串的模式匹配算法,通俗地理解,是一种用来判断两个串之间是否具有”主串与子串”关系的算法。

主串与子串:如果串 A(如 “shujujiegou”)中包含有串 B(如 “ju”),则称串 A 为主串,串 B 为子串。主串与子串之间的关系可简单理解为一个串 “包含” 另一个串的关系。

实现串的模式匹配的算法主要有以下两种:

普通的模式匹配算法;

快速模式匹配算法;

本节,先来学习普通模式匹配(BF)算法的实现。

BF算法原理

普通模式匹配算法,其实现过程没有任何技巧,就是简单粗暴地拿一个串同另一个串中的字符一一比对,得到最终结果。

例如,使用普通模式匹配算法判断串 A(“abcac”)是否为串 B(“ababcabacabab”)子串的判断过程如下:

首先,将串 A 与串 B 的首字符对齐,然后逐个判断相对的字符是否相等,如图 1 所示:

《字符串,数据结构中的串存储结构》

图 1 串的第一次模式匹配示意图

图 1 中,由于串 A 与串 B 的第 3 个字符匹配失败,因此需要将串 A 后移一个字符的位置,继续同串 B 匹配,如图 2 所示:

《字符串,数据结构中的串存储结构》

图 2 串的第二次模式匹配示意图

图 2 中可以看到,两串匹配失败,串 A 继续向后移动一个字符的位置,如图 3 所示:

《字符串,数据结构中的串存储结构》

图 3 串的第三次模式匹配示意图

图 3 中,两串的模式匹配失败,串 A 继续移动,一直移动至图 4 的位置才匹配成功:

《字符串,数据结构中的串存储结构》

图 4 串模式匹配成功示意图

由此,串 A 与串 B 以供经历了 6 次匹配的过程才成功,通过整个模式匹配的过程,证明了串 A 是串 B 的子串(串 B 是串 A 的主串)。

接下来,我们要编写代码实现两个串的模式匹配(图 1 ~图 4)。

BF算法实现

BF 算法的实现思想是:将用户指定的两个串 A 和串 B,使用串的定长顺序存储结构存储起来,然后循环实现两个串的模式匹配过程,C 语言实现代码如下:

#include <stdio.h>
#include <string.h>
//串普通模式匹配算法的实现函数,其中 B是伪主串,A是伪子串
int mate(char * B,char *A){
    int i=0,j=0;
    while (i<strlen(B) && j<strlen(A)) {
        if (B[i]==A[j]) {
            i++;
            j++;
        }else{
            i=i-j+1;
            j=0;
        }
    }
    //跳出循环有两种可能,i=strlen(B)说明已经遍历完主串,匹配失败;j=strlen(A),说明子串遍历完成,在主串中成功匹配
    if (j==strlen(A)) {
        return i-strlen(A)+1;
    }
    //运行到此,为i==strlen(B)的情况
    return 0;
}
int main() {
    int number=mate("ababcabcacbab", "abcac");
    printf("%d",number);
    return 0;
}

程序运行结果:
6

注意,在实现过程中,我们借助 i-strlen(A)+1 就可以得到成功模式匹配所用的次数,也就是串 A 移动的总次数。

BF算法时间复杂度

该算法最理想的时间复杂度 O(n),n 表示串 A 的长度,即第一次匹配就成功。

BF 算法最坏情况的时间复杂度为 O(nm),n 为串 A 的长度,m 为串 B 的长度。例如,串 B 为 “0000000001”,而串 A 为 “01”,这种情况下,两个串每次匹配,都必须匹配至串 A 的最末尾才能判断匹配失败,因此运行了 nm 次。

总结

BF 算法的实现过程很 “无脑”,不包含任何技巧,在对数据量大的串进行模式匹配时,算法的效率很低。

    原文作者:睿科知识云
    原文地址: https://blog.csdn.net/ccc369639963/article/details/122391405
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞