k近邻算法的优缺点

优点:

  • 简单有效
  • 重新训练的代价低(没有构建模型)
  • 适合类域交叉样本
    • KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
  • 适合大样本自动分类
    • 该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

缺点:

  • 惰性学习
    • KNN算法是懒散学习方法(lazy learning,基本上不学习),一些积极学习的算法要快很多
  • 类别评分不是规格化
    • 不像一些通过概率评分的分类
  • 输出可解释性不强
    • 例如决策树的输出可解释性就较强
  • 对不均衡的样本不擅长
    • 当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
  • 计算量较大
    • 目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。
    原文作者:缘 源 园
    原文地址: https://blog.csdn.net/weixin_48135624/article/details/115712665
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞