数据结构:图之DFS与BFS的复杂度分析

BFS的复杂度分析。  

     BFS是一种借用队列来存储的过程,分层查找,优先考虑距离出发点近的点。无论是在邻接表还是邻接矩阵中存储,都需要借助一个辅助队列,v个顶点均需入队,最坏的情况下,空间复杂度为O(v)。

    邻接表形式存储时,每个顶点均需搜索一次,时间复杂度T1=O(v),从一个顶点开始搜索时,开始搜索,访问未被访问过的节点。最坏的情况下,每个顶点至少访问一次,每条边至少访问1次,这是因为在搜索的过程中,若某结点向下搜索时,其子结点都访问过了,这时候就会回退,故时间复 杂度为O(E),算法总的时间复 度为O(|V|+|E|)。

邻接矩阵存储方式时,查找每个顶点的邻接点所需时间为O(V),即该节点所在的该行该列。又有n个顶点,故算总的时间复杂度为O(|V|^2)。

 

DFS复杂度分析

DFS算法是一一个递归算法,需要借助一个递归工作栈,故它的空问复杂度为O(V)。

遍历图的过程实质上是对每个顶点查找其邻接点的过程,其耗费的时间取决于所采用结构。

邻接表表示时,查找所有顶点的邻接点所需时间为O(E),访问顶点的邻接点所花时间为O(V),此时,总的时间复杂度为O(V+E)。

邻接矩阵表示时,查找每个顶点的邻接点所需时间为O(V),要查找整个矩阵,故总的时间度为O(V^2)。 

 v为图的顶点数,E为边数。

    原文作者:DFS
    原文地址: https://blog.csdn.net/Charles_ke/article/details/82497543
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞