人脑理解递归与递推

递归真是个奇妙的思维方式。自打我大二学习递归以来,对一些简单的递归问题,我总是惊叹于递归描述问题和编写代码的简洁。但是总感觉没能融会贯通地理解递归,有时尝试用大脑去深入“递归”,层次较深时便常产生进不去,出不来的感觉。这种状态也导致我很难灵活地运用递归解决问题。有一天,我看到一句英文:“To Iterate is Human, to Recurse, Divine.”中文译为:“人理解迭代,神理解递归。”然后,我心安理得地放弃了对递归的深入理解。直到看到王垠谈程序语言最精华的原理时提到了递归,并说递归比循环表达能力强很多,而且效率几乎一样。再次唤醒了我对递归的理解探索。

我首先在知乎上发现了下面两个例子,对比了递归和循环。例子来源于知乎用户李继刚的回答。

递归:你打开面前这扇门,看到屋里面还有一扇门(这门可能跟前面打开的门一样大小(静),也可能门小了些(动)),你走过去,发现手中的钥匙还可以打开它,你推开门,发现里面还有一扇门,你继续打开,。。。, 若干次之后,你打开面前一扇门,发现只有一间屋子,没有门了。 你开始原路返回,每走回一间屋子,你数一次,走到入口的时候,你可以回答出你到底用这钥匙开了几扇门。

循环:你打开面前这扇门,看到屋里面还有一扇门,(这门可能跟前面打开的门一样大小(静),也可能门小了些(动)),你走过去,发现手中的钥匙还可以打开它,你推开门,发现里面还有一扇门,(前面门如果一样,这门也是一样,第二扇门如果相比第一扇门变小了,这扇门也比第二扇门变小了(动静如一,要么没有变化,要么同样的变化)),你继续打开这扇门,。。。,一直这样走下去。 入口处的人始终等不到你回去告诉他答案。

该用户这么总结到:

递归就是有去(递去)有回(归来)。

具体来说,为什么可以”有去“? 
这要求递归的问题需要是可以用同样的解题思路来回答除了规模大小不同其他完全一样的问题。

为什么可以”有回“?
这要求这些问题不断从大到小,从近及远的过程中,会有一个终点,一个临界点,一个baseline,一个你到了那个点就不用再往更小,更远的地方走下去的点,然后从那个点开始,原路返回到原点。

上面的解释几乎回答了我已久的疑问:为什么我老是有递归没有真的在解决问题的感觉?
因为递是描述问题,归是解决问题。而我的大脑容易被递占据,只往远方去了,连尽头都没走到,何谈回的来。

《漫谈递归:递归的思想》这篇文章将递归思想归纳为:

递归的基本思想是把规模大的问题转化为规模小的相似的子问题来解决。在函数实现时,因为解决大问题的方法和解决小问题的方法往往是同一个方法,所以就产生了函数调用它自身的情况。另外这个解决问题的函数必须有明显的结束条件,这样就不会产生无限递归的情况了。

需注意的是,规模大转化为规模小是核心思想,但递归并非是只做这步转化,而是把规模大的问题分解为规模小的子问题和可以在子问题解决的基础上剩余的可以自行解决的部分。而后者就是归的精髓所在,是在实际解决问题的过程。

我试图把我理解到递归思想用递归用程序表达出来,确定了三个要素:递 + 结束条件 + 归。

recursion(大规模) { if (end_condition) { end; } else { //先将问题全部描述展开,再由尽头“返回”依次解决每步中剩余部分的问题 recursion(小规模); //go; solve; //back; } }

但是,我很容易发现这样描述遗漏了我经常会遇到的一种递归情况,比如递归遍历的二叉树的先序。我将这种情况用如下递归程序表达出来。

recursion(大规模) { if (end_condition) { end; } else { //在将问题转换为子问题描述的每一步,都解决该步中剩余部分的问题。 solve; //back; recursion(小规模); //go; } }

总结到这里,我突然发现递归是为了最能表达这种思想,所以用“递归”这个词,其实递归可以是“有去有回”,也可以是“有去无回”。但其根本是“由大往小地去,由近及远地去”。“递”是必需,“归”并非必需,依赖于要解决的问题,有的需要去的路上解决,有的需要回来的路上解决。有递无归的递归其实就是我们很容易理解的一种分治思想。

其实理解递归可能没有“归”,只有去(分治)的情况后,我们应该想到递归也许可以既不需要在“去”的路上解决问题,也不需要在“归”的路上解决问题,只需在路的尽头解决问题,即在满足停止条件时解决问题。递归的分治思想不一定是要把问题规模递归到最小,还可以是将问题递归穷举其所有的情形,这时通常递归的表达力体现在将无法书写的嵌套循环(不确定数量的嵌套循环)通过递归表达出来。
将这种递归情形用递归程序描述如下:

recursion()
{
     if (end_condition)
     {
          solve;     
     }
     else
     {     //在将问题转换为子问题描述的每一步,都解决该步中剩余部分的问题。
          for () { recursion();     //go; }
     }
}

例如,字符串的全排列就可以用这种递归简洁地表达出来,如下:

void permute(const string &prefix, const string &str) { if(str.length() == 0) cout << prefix << endl; else { for(int i = 0; i < str.length(); i++) permute(prefix+str[i], str.substr(0,i)+str.substr(i+1,str.length())); } }

由这个例子,可以发现这种递归对递归函数参数出现了设计要求,即便递归到尽头,组合的字符串规模(长度)也没有变小,规模变小的是递归函数的一个参数。可见,这种变化似乎一下将递归的灵活性大大地扩展了,所谓的大规模转换为小规模需要有一个更为广义的理解了。

对递归的理解就暂时到这里了,可以看出文章中提到关于“打开一扇门”的递归例子来解释递归并不准确,例子只描述了递归的一种情况。而“递归就是有去(递去)有回(归来)”的论断同样不够准确。要为只读了文章前半部分的读者惋惜了。我也给出自己对递归思想的总结吧:

递归的基本思想是广义地把规模大的问题转化为规模小的相似的子问题或者相似的子问题集合来解决。广义针对规模的,规模的缩小具体可以是指递归函数的参数,也可以是其参数之一。相似是指解决大问题的方法和解决小问题的方法往往是同一个方法,还可以是指解决子问题集的各子问题的方法是同一个方法。解决大问题的方法可以是由解决次规模问题的方法和解决剩余部分的方法组成,也可以是由一系列解决次规模问题的方法组成。

递推算法

给定一个数的序列H0,H1,…,Hn,…若存在整数n0,使当n>n0时,可以用等号(或大于号、小于号)将Hn与其前面的某些项Hi(0<i<n)联系起来,这样的式子就叫做递推关系。

递推算法是一种简单的算法,即通过已知条件,利用特定关系得出中间推论,直至得到结果的算法。 
递推算法分为顺推和逆推两种。

相对于递归算法,递推算法免除了数据进出栈的过程,也就是说,不需要函数不断的向边界值靠拢,而直接从边界出发,直到求出函数值. 
比如阶乘函数:f(n)=n*f(n-1) 
在f(3)的运算过程中,递归的数据流动过程如下: 
f(3){f(i)=f(i-1)*i}–>f(2)–>f(1)–>f(0){f(0)=1}–>f(1)–>f(2)–f(3){f(3)=6} 
而递推如下: 
f(0)–>f(1)–>f(2)–>f(3) 
由此可见,递推的效率要高一些,在可能的情况下应尽量使用递推.但是递归作为比较基础的算法,它的作用不能忽视.所以,在把握这两种算法的时候应该特别注意。

顺推法

所谓顺推法是从已知条件出发,逐步推算出要解决的问题的方法叫顺推。 
如斐波拉契数列,设它的函数为f(n),已知f(1)=1,f(2)=1;f(n)=f(n-2)+f(n-1)(n>=3,n∈N)。则我们通过顺推可以知道,f(3)=f(1)+f(2)=2,f(4)=f(2)+f(3)=3……直至我们要求的解。

逆推法

所谓逆推法从已知问题的结果出发,用迭代表达式逐步推算出问题的开始的条件,即顺推法的逆过程,称为逆推。

递推算法的经典例子

【案例】从原点出发,一步只能向右走、向上走或向左走。恰好走N步且不经过已走的点共有多少种走法?

样例输入:N=2

样例输出:result=7

样例输入:N=3

样例输出:result=17

解题思路:要解决走N步共有多少种走法,我们在拿到题目的时候最直接的想法就是先画出当N=1、N=2、N=3。。。。。N=n时对应走法的图例,由简单到复杂、由特殊到一般的推理过程,找出规律获得解题的思路。在数学上,我们称为归纳法。如果用编程的方法来求解这样的推理题,我们把这样的求解思路(算法)称之为递推法。递推的精髓在于f(n)的结果一般由f(n-1)、f(n-2)…..f(n-k)的前k次结果推导出来。我们在解决这类递推问题时,难点就是如何从简单而特殊的案例,找到问题的一般规律,写出f(n)与f(n-1)、f(n-2)…..f(n-k)之间的关系表达式,从而得出求解的结果。在历年noip的复赛当中,参赛选手对于这类题目都有这样的感受,往往花费了大量的时间来分析题目的一般规律,写出f(n)的一般表达式,而编程实现可能只需要几分钟的时间。所以我们在平时训练的时候,对于这样的递推题目,就必须掌握如何分析问题,从特殊推导出一般的规律,写出想要的关系表达式,问题就迎刃而解了。下面是这道题解题的心得,供大家参考:

(1)当N=1时,绘出走法图

《人脑理解递归与递推》

(图1)共有3种不同的走法,也就是黑色线条的数量,即f(1)=3

(2)当N=2时,绘出走法图

《人脑理解递归与递推》

(图2)共有7种不同的走法,也就是绿色线条的数量,即f(2)=7

(3)当N=3时,绘出走法图

《人脑理解递归与递推》

(图3)共有17种不同的走法,也就是红色线条的数量,即f(3)=17

由此,我们不难看出,对于任何一个起点,最多可以走出3种走法,但最少必须走出2种走法。那么我们要求出f(n),实际上转换为如果我们能够得到上一步即f(n-1)有多少个终点是有3种走法的,有多少个点有2种走法的,那么问题就解决了。

a. 上一步,即f(n-1)有多少个终点是有3种走法的。

《人脑理解递归与递推》

       对于N=3时,f(n-1)=f(2), 有3个点A、B、C可以走出3种不同走法的,这3个点是怎么得到的呢?它的存在与N值有没有必然的联系?如果我们能找到它与N之间的关系,问题也就解决了。有了这样的思路以后,我们不难找到这样的规律:如果f(n-2)存在,即上上步存在,那么从上上步出发的线路里面必然会有一条向上走的线路,而这条向上走的线路在到达f(n-1)之后,  向f(n)出发时也必然有左、上、右这三种走法,那么我们就得出了这样的结论:当f(n-2)存在时,f(n-2)的值实际上就等价于f(n-1)有多少个终点是有3种走法。

         b.    f(n-1)有多少个终点是有2种走法的

《人脑理解递归与递推》

对于N=3时,有4个点D、E、F、G可以走出2种不同走法的,这4个点又是怎么得到的呢?它与N值有什么联系呢? 实际上我们在解决了上一个问题的时候,这个问题就变得相当容易了, f(n-1)减掉刚才有3种走法的点,剩下的点不就是只有2种走法了吗?即f(n-1)-f(n-2)。

    c. 得出f(n)的一般关系式

f(n)=3*f(n-2)+2*(f(n-1)-f(n-2) ) (n>=3)

化简:

f(n)=2*f(n-1)+f(n-2) (n>=3)

      有一点需要补充的就是,任何递推题,都会有临界条件。当N=1时,f(n)=3;,当N=2时,f(n)=7,这些都可以看成是临界条件。只有当N>=3时,即上上步存在的情况下,就可以得出f(n)的一般通式:f(n)=2*f(n-1)+f(n-2)

          (本题还有其他的解法,同学们可以继续挖掘!)

【参考程序】

#include <stdio.h> 
#include <windows.h> 
int main() 

   int n; 
   int i; 
   int fn_1,fn_2; 
   printf(“please input n=”); 
   scanf(“%d”,&n); //输入任意n值 
   int fn=0; 
   if(n==1) 
     fn=3; //初始化当n=1和n=2时的临界条件 
   else if(n==2) 
     fn=7; 
   else{ 
     fn_1=7; 
     fn_2=3; 
     for(i=3;i<=n;i++) 
     { 
        fn=2*fn_1+fn_2; //当n>=3时fn的通式 
        fn_2=fn_1;//更新fn_1和fn_2的值 
        fn_1=fn; 
     } 
   } 
   printf(“一共有%d种走法!\n”,fn);  //输出结果 
   return 0; 
}

java递归算法分析

递归算法分析:就是把复杂的问题分解为若干个相对简单的子问题,一直分解下去,直到子问题有答案为止,也就是说到了递推的出口。 
递归算法要注意的两点: 
      (1) 递归就是在方法里调用自己; 
      (2) 在使用递归算法时,必须要有一个明确的递归结束条件,称为递归出口。 
先看一个简单的例子,求从1加到5的和,代码如下:

《人脑理解递归与递推》

package com.juziku;

/**
* 递归测试
* @author sunlightcs
* 2011-3-9
* http://hi.juziku.com/sunlightcs/
*/
public class RecursionTest {
    
    /**
     * 求从1加到n的和
     */
    public static int sum(int n){
        if(n == 1){
            return 1;
        }else{
            return n + sum(n-1);
        }
    }
    
    
    public static void main(String[] args) {
        System.out.println(sum(5));
    }
}

《人脑理解递归与递推》

先分析一下执行的流程: 
n=5时,执行sum(5)方法,返回的结果为:5 + sum(4) 
n=4时,执行sum(4)方法,返回的结果为:4 + sum(3) 
n=3时,执行sum(3)方法,返回的结果为:3 + sum(2) 
n=2时,执行sum(2)方法,返回的结果为:2 + sum(1) 
n=1时,执行sum(1)方法,返回的结果为:1 
再向上返回,依次执行: 
2+1 
3+(2+1) 
4+(3+2+1) 
5+(4+3+2+1) = 15 
思路应该是这样的: 
要知道从1加到5的和,先得知道从1加到4的和,即:5+sum(4) 
要知道从1加到4的和,先得知道从1加到3的和,即:4+sum(3) 
要知道从1加到3的和,先得知道从1加到2的和,即:3+sum(2) 
要知道从1加到2的和,先得知道从1加到1的和,即:2+sum(1) 
从而很容易看出,递归的出口为1也就是sum(1)的值为1 
再看一个例子,求5的阶乘,代码如下:

《人脑理解递归与递推》

package com.juziku;

/**
* 递归测试
* @author sunlightcs
* 2011-3-8
* http://hi.juziku.com/sunlightcs/
*/
public class RecursionTest {

    /**
     * 求n的阶乘
     */
    public static int multiply(int n) {
        if(n == 1){
            return 1;
        }else{
            return n * multiply(n - 1);
        }
    }
    
    
    public static void main(String[] args) {
        System.out.println(multiply(5));
    }
}

《人脑理解递归与递推》

    原文作者:递归与分治算法
    原文地址: https://blog.csdn.net/sdulibh/article/details/50573182
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞