TCP 三次握手和四次挥手

TCP 和 UDP

讲解TCP三次握手和四次握手之前,我们先了解一下TCP和UDP这两个重量级的传输层协议。

用户数据报协议UDP(User Datagram Protocol):

  • UDP在传送数据之前不需要先建立连接,远程主机在收到UDP报文后,不需要给出任何确认。
  • 虽然UDP不提供可靠交付,但在某些情况下UDP确是一种最有效的工作方式(一般用于即时通信),比如:QQ 语音、 QQ 视频 、直播等等

传输控制协议TCP(Transmission Control Protocol):

  • TCP提供 面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。
  • TCP不提供广播或多播服务。由于TCP要提供 可靠的,面向连接的传输服务(TCP的可靠体现在TCP在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、流量控制、拥塞控制机制,在数据传完后,还会四次挥手断开连接用来节约系统资源),这不仅使协议数据单元的首部增大很多,还要占用许多处理机资源。
  • TCP一般用于文件传输、发送和接收邮件、远程登录等场景。

TCP协议

TCP报文格式简介

《TCP 三次握手和四次挥手》

首部固定部分各字段意义如下:

1 、源端口和目的端口:各占2个字节,分别写入源端口和目的端口。IP地址+端口号就可以确定一个进程地址

2、 序号/序列号(Sequense Number,SN):在一个TCP连接中传送的字节流中的每一个字节都按顺序编号。该字段表示本报文段所发送的数据的第一个字节的序号。初始序号称为 Init Sequense Number, ISN(序号/序列号这个字段很重要,大家留个印象,下文会详细讲解)例如,一报文段的序号是101,共有100字节的数据。这就表明:本报文段的数据的第一个字节的序号是101,最后一个字节的序号是200。显然,下一个报文段的数据序号应当从201开始,即下一个报文段的序号字段值应为201。

3 、 确认号ack:期望收到对方下一个报文段的第一个数据字节的序号。若确认号为N,则表明:到序号N-1为止的所有数据都已正确收到。

4、 数据偏移(首部长度):它指出 TCP 报文段的数据起始处距离 TCP 报文段的起始处有多远。这个字段实际上是指出TCP报文段的首部长度。

5、 保留:占 6 位,应置为 0,保留为今后使用。大家看上图,保留位的右边还有 6 个标志位(Flags)(重要),这是TCP 用来说明该报文段性质的:

  • 紧急位 URG:当 URG = 1 时,表明此报文段中有紧急数据,是高优先级的数据,应尽快发送,不用在缓存中排队。该控制位需配合紧急指针使用(紧急指针指出本报文段中紧急数据的字节数)举个例子:我们需要取消一个已经发送了很长程序的运行,因此用户从键盘发出中断命令。如果不使用紧急数据,那么这个指令将存储在接收 TCP 的缓存末尾,只有在所有的数据被处理完毕后这两个字符才被交付接收方的应用进程,这样做就无法实现立即中断。
  • 确认 ACK:仅当 ACK = 1 时确认号字段才有效,当 ACK = 0 时确认号无效。TCP 规定,在连接建立后所有传送的报文段都必须把 ACK 置为 1。
  • 推送 PSH:当两个应用进程进行交互式的通信时,有时在一端的应用进程希望在键入一个命令后立即就能收到对方的响应。在这种情况下,TCP 就可以使用推送(push)操作。这时,发送方 TCP 把 PSH 置为 1,并立即创建一个报文段发送出去。接收方 TCP 收到 PSH = 1 的报文段,就尽快地交付接收应用进程。而不用等到整个缓存都填满了后再向上交付。
  • 复位 RST:当 RST = 1 时,表明 TCP 连接中出现了严重错误(如由于主机崩溃或其他原因),必须释放连接,然后再重新建立传输连接。
  • 同步 SYNSYN = 1 表示这是一个连接请求或连接接受报文。当 SYN = 1 而 ACK = 0 时,表明这是一个连接请求报文段。对方若同意建立连接,则应在响应的报文段中使 SYN = 1 且 ACK = 1。
  • 终止 FIN用来释放一个连接。当 FIN = 1时,表明此报文段的发送发的数据已发送完毕,并要求释放运输连接。

需要注意的是:

        不要将确认号ack与标志位中的ACK搞混了。确认号ack=发起方Seq+1,两端配对。

回顾一下图中字符的含义:

SYN:连接请求/接收 报文段

seq:发送的第一个字节的序号

ack:确认号。希望收到的下一个数据的第一个字节的序号

ACK:确认序号有效

三次握手

三次握手(Three-way Handshake)其实就是指建立一个TCP连接时,需要客户端和服务器总共发送3个包。进行三次握手的主要作用就是为了确认双方的接收能力和发送能力是否正常、指定自己的初始化序列号为后面的可靠性传送做准备实质上其实就是连接服务器指定端口,建立TCP连接,并同步连接双方的序列号和确认号,交换TCP窗口大小信息。

《TCP 三次握手和四次挥手》

握手之前主动打开连接的客户端结束Closed阶段,被动打开的服务器端也结束Closed阶段,并进入Listen阶段

Closed:没有任何连接状态          Listen:侦听来自远方 TCP 端口的连接请求

随后开始“三次握手”:

第一次握手

首先客户端向服务器端发送一段TCP报文,其中:

  • 标记位为SYN=1,表示“请求建立新连接”;
  • 序号为Seq=X(X一般为1),表示本报文段所发送的数据的第一个字节的序号;
  • 随后客户端进入SYN-SENT阶段。 

SYN-SENT:在发送连接请求后等待匹配的连接请求 

第二次握手

 服务器端接收到来自客户端的TCP报文之后,结束LISTEN阶段。并返回一段TCP报文,其中:

  • 服务器收到客户端的 SYN 报文之后,会发送 SYN 报文作为应答(SYN = 1),并且指定自己的初始化序列号 ISN(y),即图中的 seq = y。同时会把客户端的 ISN + 1 作为确认号 ack 的值,表示已经收到了客户端发来的的 SYN 报文,希望收到的下一个数据的第一个字节的序号是 x + 1
  • TCP 规定,在连接建立后所有传送的报文段都必须把 ACK 置为 1。
  • 随后服务器端进入SYN-RCVD阶段。

SYN-RECEIVED:在收到和发送一个连接请求后等待对连接请求的确认  

第三次握手

客户端接收到来自服务器端的确认收到数据的TCP报文之后,明确了从客户端到服务器的数据传输是正常的,结束SYN-SENT阶段。并返回最后一段TCP报文。其中:

  • 标志位为ACK=1,表示“确认收到服务器端同意连接的信号”(即告诉服务器,我知道你收到我发的数据了);
  • 序号为Seq=x+1,表示收到服务器端的确认号ack,并将其值作为自己的序号值;
  • 确认号为ack=y+1,表示收到服务器端序号Seq,并将其值加1作为自己的确认号Ack的值;
  • 随后客户端进入ESTABLISHED阶段。至此,双方建立起了 TCP 连接。

服务器收到来自客户端的“确认收到服务器数据”的TCP报文之后,明确了从服务器到客户端的数据传输是正常的。结束SYN-SENT阶段,进入ESTABLISHED阶段。

ESTABLISHED:代表一个打开的连接,数据可以传送给用户

在客户端与服务器端传输的TCP报文中,双方的确认号Ack和序号Seq的值,都是在彼此Ack和Seq值的基础上进行计算的,这样做保证了TCP报文传输的连贯性。一旦出现某一方发出的TCP报文丢失,便无法继续”握手”,以此确保了”三次握手”的顺利完成。

此后客户端和服务器端进行正常的数据传输。这就是“三次握手”的过程。

三次握手”的动态过程:

《TCP 三次握手和四次挥手》

为什么要三次握手?

        三次握手的目的是建立可靠的通信信道,说到通讯,简单来说就是数据的发送与接收,而三次握手最主要的目的就是双方确认自己与对方的发送与接收是正常的

只有经过三次握手才能确认双发的收发功能都正常,缺一不可:

  • 第一次握手(客户端发送 SYN 报文给服务器,服务器接收该报文):客户端什么都不能确认(因为感知不到服务端的情况,所以客户端此时对自己和对方都不确定);服务器确认了对方发送正常,自己接收正常
  • 第二次握手(服务器响应 SYN 报文给客户端,客户端接收该报文):客户端确认了:自己发送、接收正常,对方发送、接收正常服务器确认了:对方发送正常,自己接收正常(服务器收到第一次握手的报文,说明客户端发送正常,自己收到了说明自己接收正常,但是服务器第二次握手发出的报文由于感知不到客户端,所以不确定客户端的接收是否正常)
  • 第三次握手(客户端发送 ACK 报文给服务器):客户端确认了:自己发送、接收正常,对方发送、接收正常; 服务器确认了:自己发送、接收正常,对方发送、接收正常

ISN(Initial Sequence Number)是固定的吗?

当一端为建立连接而发送它的SYN时,它为连接选择一个初始序号。ISN随时间而变化,因此每个连接都将具有不同的ISN。ISN可以看作是一个32比特的计数器,每4ms加1 。这样选择序号的目的在于防止在网络中被延迟的分组在以后又被传送,而导致某个连接的一方对它做错误的解释。

三次握手的其中一个重要功能是客户端和服务端交换 ISN(Initial Sequence Number),以便让对方知道接下来接收数据的时候如何按序列号组装数据。如果 ISN 是固定的,攻击者很容易猜出后续的确认号,因此 ISN 是动态生成的。

什么是半连接队列?

        服务器第一次收到客户端的 SYN 之后,就会处于 SYN_RCVD 状态,此时双方还没有完全建立其连接,服务器会把此种状态下请求连接放在一个队列里,我们把这种队列称之为半连接队列

当然还有一个全连接队列,就是已经完成三次握手,建立起连接的就会放在全连接队列中。如果队列满了就有可能会出现丢包现象。

这里在补充一点关于SYN-ACK 重传次数的问题:
        服务器发送完SYN-ACK包,如果未收到客户确认包,服务器进行首次重传,等待一段时间仍未收到客户确认包,进行第二次重传。如果重传次数超过系统规定的最大重传次数,系统将该连接信息从半连接队列中删除。
注意,每次重传等待的时间不一定相同,一般会是指数增长,例如间隔时间为 1s,2s,4s,8s…

三次握手过程中可以携带数据吗

第三次握手时是可以携带数据的但是,第一次、第二次握手绝对不可以携带数据

       假如第一次握手可以携带数据的话,如果有人要恶意攻击服务器,那他每次都在第一次握手中的 SYN 报文中放入大量的数据,然后疯狂重复发 SYN 报文的话(因为攻击者根本就不用管服务器的接收、发送能力是否正常,它就是要攻击你),这会让服务器花费很多时间、内存空间来接收这些报文。

简单的记忆就是,请求连接/接收 即 SYN = 1的时候不能携带数据

而对于第三次的话,此时客户端已经处于 ESTABLISHED 状态。对于客户端来说,他已经建立起连接了,并且也已经知道服务器的接收、发送能力是正常的了,所以当然能正常发送/携带数据了。

SYN攻击是什么?

 服务器端的资源分配是在二次握手时分配的,而客户端的资源是在完成三次握手时分配的,所以服务器容易受到SYN洪泛攻击。

        SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server则回复确认包,并等待Client确认,由于源地址不存在,因此Server需要不断重发直至超时,这些伪造的SYN包将长时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络拥塞甚至系统瘫痪。SYN 攻击是一种典型的 DoS/DDoS 攻击

检测 SYN 攻击非常的方便,当你在服务器上看到大量的半连接状态时,特别是源IP地址是随机的,基本上可以断定这是一次SYN攻击。在 Linux/Unix 上可以使用系统自带的 netstat 命令来检测 SYN 攻击。

netstat -n -p TCP | grep SYN_RECV

常见的防御 SYN 攻击的方法有如下几种:

  • 缩短超时(SYN Timeout)时间
  • 增加最大半连接数
  • 过滤网关防护
  • SYN cookies技术

四次挥手

        建立一个连接需要三次握手,而终止一个连接要经过四次挥手(也有将四次挥手叫做四次握手的)。这由TCP的半关闭(half-close)特性造成的。所谓的半关闭,其实就是TCP提供了连接的一端在结束它的发送后还能接收来自另一端数据的能力

TCP 连接的拆除需要发送四个包,因此称为四次挥手(Four-way handshake),客户端或服务端均可主动发起挥手动作

《TCP 三次握手和四次挥手》

回顾一下上图中符号的意思:

  • FIN :连接终止位
  • seq:发送的第一个字节的序号
  • ACK:确认报文段
  • ack:确认号。希望收到的下一个数据的第一个字节的序号

刚开始双方都处于ESTABLISHED 状态,假设是客户端先发起关闭请求。四次挥手的过程如下:

第一次挥手

        客户端发送一个 FIN 报文(请求连接终止:FIN = 1),报文中会指定一个序列号 seq = u。并停止再发送数据,主动关闭 TCP 连接。此时客户端处于 FIN_WAIT1 状态,等待服务端的确认。

FIN-WAIT-1 – 等待远程TCP的连接中断请求,或先前的连接中断请求的确认。

第二次挥手

        服务端收到 客户端的连接释放报文段(FIN) 之后,会发送 ACK 报文,且把客户端的序号值 +1 作为 ACK 报文的序列号值,表明已经收到客户端的报文了,此时服务端处于 CLOSE_WAIT状态。

        即服务端收到客户端的连接释放报文段后即发出确认报文段(ACK=1,确认号ack=u+1,序号seq=v),服务端进入CLOSE_WAIT(关闭等待)状态,此时的TCP处于半关闭状态,客户端到服务端的连接释放。客户端收到服务端的确认后,进入FIN_WAIT2(终止等待2)状态,等待服务端发出的连接释放报文段。

CLOSE-WAIT – 等待从本地用户发来的连接中断请求;FIN-WAIT-2 – 从远程TCP等待连接中断请求;

第三次挥手

        如果服务端也想断开连接了(没有要向客户端发出的数据),和客户端的第一次挥手一样,发送 FIN 报文,且指定一个序列号。此时服务端处于 LAST_ACK 的状态,等待客户端的确认。

        即服务端没有要向客户端发出的数据,服务端发出连接释放报文段(FIN=1,ACK=1,序号seq=w,确认号ack=u+1),服务端进入LAST_ACK(最后确认)状态,等待客户端的确认

LAST-ACK – 等待原来发向远程TCP的连接中断请求的确认;

第四次挥手

        客户端收到 FIN 之后,一样发送一个 ACK 报文作为应答(ack = w+1),且把服务端的序列值 +1 作为自己 ACK 报文的序号值(seq=u+1),此时客户端处于 TIME_WAIT(时间等待)状态。需要过一阵子以确保服务端收到自己的 ACK 报文之后才会进入 CLOSED 状态,服务端收到 ACK 报文之后,就处于关闭连接了,处于 CLOSED 状态。
        

        即客户端收到服务端的连接释放报文段后,对此发出确认报文段(ACK=1,seq=u+1,ack=w+1),客户端进入TIME_WAIT(时间等待)状态。此时TCP未释放掉,需要经过时间等待计时器设置的时间2MSL后,客户端才进入CLOSED状态(这样做的目的是确保服务端收到自己的 ACK 报文。如果服务端在规定时间内没有收到客户端发来的 ACK 报文的话,服务端会重新发送 FIN 报文给客户端,客户端再次收到 FIN 报文之后,就知道之前的 ACK 报文丢失了,然后再次发送 ACK 报文给服务端)。服务端收到 ACK 报文之后,就关闭连接了,处于 CLOSED 状态。

TIME-WAIT – 等待足够的时间以确保远程TCP接收到连接中断请求的确认;

收到一个FIN只意味着在这一方向上没有数据流动。客户端执行主动关闭并进入TIME_WAIT是正常的,服务端通常执行被动关闭,不会进入TIME_WAIT状态。

为什么“握手”是三次,“挥手”却要四次?

TCP建立连接时之所以只需要”三次握手”,是因为在第二次”握手”过程中,服务器端发送给客户端的TCP报文是以SYN与ACK作为标志位的。SYN是请求连接标志,表示服务器端同意建立连接;ACK是确认报文,表示告诉客户端,服务器端收到了它的请求报文

即SYN建立连接报文与ACK确认接收报文是在同一次”握手”当中传输的,所以”三次握手”不多也不少,正好让双方明确彼此信息互通。

TCP释放连接时之所以需要“四次挥手”,是因为FIN释放连接报文与ACK确认接收报文是分别由第二次和第三次”握手”传输的。为何建立连接时一起传输,释放连接时却要分开传输?

        建立连接时,被动方服务器端结束CLOSED阶段进入“握手”阶段并不需要任何准备,可以直接返回SYN和ACK报文,开始建立连接。

        释放连接时,被动方服务器,突然收到主动方客户端释放连接的请求时并不能立即释放连接,因为还有必要的数据需要处理,所以服务器先返回ACK确认收到报文,经过CLOSE-WAIT阶段准备好(需要将未处理完的数据处理完毕)之后,才能向客户端发送FIN释放连接报文。

所以是“三次握手”,“四次挥手”

为什么客户端在TIME-WAIT阶段要等2MSL?

目的是确认服务器端是否收到客户端发出的ACK确认报文

        当客户端发出最后的ACK确认报文时,并不能确定服务器端能够收到该段报文。所以客户端在发送完ACK确认报文之后,会设置一个时长为2MSL的计时器。MSL指的是Maximum Segment Lifetime:一段TCP报文在传输过程中的最大生命周期。2MSL即是服务器端发出为FIN报文和客户端发出的ACK确认报文所能保持有效的最大时长。

服务器端在1MSL内没有收到客户端发出的ACK确认报文,就会再次向客户端发出FIN报文(因为第四次挥手的报文可能丢失);

        如果客户端在2MSL内,再次收到了来自服务器端的FIN报文,说明服务器端由于各种原因没有接收到客户端发出的ACK确认报文。客户端再次向服务器端发出ACK确认报文,计时器重置,重新开始2MSL的计时;

        否则客户端在2MSL内没有再次收到来自服务器端的FIN报文,说明服务器端正常接收了ACK确认报文,客户端可以进入CLOSED阶段,完成“四次挥手”。

所以,客户端要经历时长为2SML的TIME-WAIT阶段;这也是为什么客户端比服务器端晚进入CLOSED阶段的原因

TCP协议和UDP协议的区别是什么

  • TCP协议是有连接的,有连接的意思是开始传输实际数据之前TCP的客户端和服务器端必须通过三次握手建立连接,会话结束之后也要结束连接。而UDP是无连接的
  • TCP协议保证数据按序发送,按序到达,提供超时重传来保证可靠性,但是UDP不保证按序到达,甚至不保证到达,只是努力交付,即便是按序发送的序列,也不保证按序送到。
  • TCP协议所需资源多,TCP首部需20个字节(不算可选项),UDP首部字段只需8个字节。
  • TCP有流量控制和拥塞控制,UDP没有,网络拥堵不会影响发送端的发送速率
  • TCP是一对一的连接,而UDP则可以支持一对一,多对多,一对多的通信。
  • TCP面向的是字节流的服务,UDP面向的是报文的服务。

本文摘自:

                作者:十万九里

                作者:AhuntSun

    原文作者:♛薄情痞子♛
    原文地址: https://blog.csdn.net/qq_35044419/article/details/124161114
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞