看了
五大常用算法之一这篇博文,感觉理解了很多,可是纯粹都是理论,缺少一些示例,所以准备综合一篇博文,以帮助自己记忆,原文:
http://www.cnblogs.com/steven_oyj/archive/2010/05/22/1741370.html
一、基本思想及策略
分治法的设计思想是:将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。
分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。
如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。
二、分治法适用的情况
分治法所能解决的问题一般具有以下几个特征:
1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;、
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
三、示例
(1)基于二分查找方法的插入排序(最坏情况Θ(nlogn) )
[cpp]
view plain
copy
print
?
- /*
- 将值A[r+1]插入A[p….r]的非降序序列中 利用的是二分查找方法来插入
- */
- void Insertion(int A[], int p, int r)
- {
- int i;
- int value = A[r+1];
- int loc = BinaryLocation(A, p, r, value); //自loc(包括loc)之后的元素全部向后移一位
- for (i = r; i >= loc; i–)
- {
- A[i+1] = A[i];
- }
- A[loc] = value;
- }
- /*
- 插入排序 两种实现方式
- */
- void InsertionSort(int A[], int p, int r)
- {
- /*********迭代实现*********/
- //int i;
- //for (i = p; i < r; i++)
- //{
- // Insertion(A, p, i);
- //}
- /*******递归实现*********/
- if (r >= p)
- {
- InsertionSort(A, p, r-1);
- Insertion(A, p, r-1);
- }
- }
(2)
大整数乘法
书上讲述的是2个位数都为n位的数相乘,我这里扩展一下,写一个更为一般的方法,任意位数的2个数相乘:
对于任意位数的2个数相乘a * b,写成:
a = a1 * 10^(n1/2) + a0 —–n1为a的位数
b = b1 * 10^(n2/2) + b0 —–n2为b的位数
分治策略就是基于以上变换,将a,b写成前一半数字和后一半数字相加的形式,例如若a = 5423678,那么a1 = 542,a0 = 3678(注意若不是偶数截取较小一半)
这样a和b相乘就可以写为:a * b = { a1 * 10^(n1/2) + a0 } * { b1 * 10^(n2/2) + b0 }
展开后整理得: a * b = a1*b1 * 10^[ (n1+n2)/2 ] + a1*b0 * 10^(n1/2) + a0*b1 * 10^(n2/2) + a0*b0 四项
这样就很容易递归的来求a * b,如果你嫌分解后的数还太大,就可以继续分解。(你可以自己规定在何时结束递归)
实现方法:我们定义一个支持方法Mul(String s1,String s2),用于在结束递归时(在本例中,我定义有一个数是1位时结束递归,直接用普通乘法)计算两个字符串的乘积(为了表示大数,用字符串来接受参数)。有了这个支持方法,分治递归实现两个大数乘法的实现如下:
public static long Mutiply(String a,String b)//用字符串读入2个大整数
{
long result = 0;
if(a.length() == 1 || b.length() == 1) //递归结束的条件
result = Mul(a,b);
else //如果2个字符串的长度都 >= 2
{
String a1 = a.substring(0, a.length() / 2 ); //截取前一半的字符串(较短的一半)
String a0 = a.substring(a1.length(), a.length()); //截取后一半的字符串
//System.out.println(a1);
//System.out.println(a0);
String b1 = b.substring(0, b.length() / 2);
String b0 = b.substring(b1.length(), b.length());
//分治的思想将整数写成这样: a = a1 * 10^(n1/2) + a0, b = b1 * 10^(n2/2),相乘展开得到以下四项
//其中n1,n2为2个整数a,b的位数
result = (long) (Mutiply(a1,b1) * Math.pow(10, a0.length() + b0.length())
+ Mutiply(a1,b0) * Math.pow(10, a0.length()) + Mutiply(a0,b1) * Math.pow(10, b0.length())
+ Mutiply(a0,b0));
}
return result;
}