Let f(x)
be the number of zeroes at the end of x!
. (Recall that x! = 1 * 2 * 3 * ... * x
, and by convention, 0! = 1
.)
For example, f(3) = 0
because 3! = 6 has no zeroes at the end, while f(11) = 2
because 11! = 39916800 has 2 zeroes at the end. Given K
, find how many non-negative integers x
have the property that f(x) = K
.
Example 1: Input: K = 0 Output: 5 Explanation: 0!, 1!, 2!, 3!, and 4! end with K = 0 zeroes. Example 2: Input: K = 5 Output: 0 Explanation: There is no x such that x! ends in K = 5 zeroes.
Note:
K
will be an integer in the range[0, 10^9]
.
这道题的题目名称非常的难懂,但是读了题目内容以后,就不难理解了,定义函数f(x)为x!的末尾0的个数,现在给了我们一个非负整数K,问使得f(x)=K成立的非负整数的个数。我们之前做过一道有关阶乘末尾零的个数的题Factorial Trailing Zeroes,从那道里我们知道了末尾0其实是由2和5相乘为10得到的,而阶乘中2的数量远多于5的个数,所以10的个数就只取决于5的个数。需要注意的一点就是,像25,125,这样的不只含有一个5的数字需要考虑进去。比如,24的阶乘末尾有4个0,分别是5,10,15,20中的四个5组成的,而25的阶乘末尾就有6个0,分别是5,10,15,20中的各一个5,还有25中的两个5,所以共有六个5,那么就不存在其阶乘数末尾有5个0的数。还有一个很重要的规律需要发现,我们知道20,21,22,23,24,这五个数的阶乘数末尾零的个数其实是相同的,都是有4个,因为它们包含的5的个数相同。而19,18,17,16,15,这五个数末尾零个数相同,均为3。那么我们其实可以发现,每五个数,必会至少多出1个5,有可能更多。所以阶乘末尾零个数均为K个的x值,只有两种情况,要么是5,要么是0,这个规律得出来后,我们继续向着正确的解题方向前进。
基于之前那道题Factorial Trailing Zeroes的解法,我们知道了如何快速求一个给定的数字阶乘末尾零的个数,那么我们只要找到了一个这样的数,其阶乘末尾零的个数等于K的话,那么就说明总共有5个这样的数,返回5,反之,如果找不到这样的数字,就返回0。那么像这种选一个candidate数字,再进行验证的操作,用二分搜索法就是极好的,属于博主的总结帖中LeetCode Binary Search Summary 二分搜索法小结的第四类,用子函数当作判断关系。我们首先要确定二分搜索法的范围,左边界很好确定,为0就行了,关键是来确定右边界,我们来分析一下,一个数字的阶乘末尾零个数为K,那么这个数字能有多大,就拿前面举的例子来说吧,末尾有4个0的最大数字是24,有六个0的最大是29,那么我们发现它们都不会超过5*(K+1)这个范围,所以这就是我们的右边界,注意右边界可能会超过整型数范围,所以要用长整型来表示。那么之后就是经典的二分搜索法的步骤了,确定一个中间值mid,然后调用子函数来计算mid的阶乘数末尾零的个数,用来和K比较大小,如果想等了,直接返回5,如果小于K,那么更新left为mid+1,反之,更新right为mid即可,最终没找到的话,返回0即可,参见代码如下:
解法一:
class Solution { public: int preimageSizeFZF(int K) { long left = 0, right = 5L * (K + 1); while (left < right) { long mid = left + (right - left) / 2; long cnt = numOfTrailingZeros(mid); if (cnt == K) return 5; else if (cnt < K) left = mid + 1; else right = mid; } return 0; } long numOfTrailingZeros(long x) { long res = 0; for (; x > 0; x /= 5) { res += x / 5; } return res; } };
下面这种解法是把子函数融到了while循环内,使得看起来更加简洁一些,解题思路跟上面的解法一模一样,参见代码如下:
解法二:
class Solution { public: int preimageSizeFZF(int K) { long left = 0, right = 5L * (K + 1); while (left < right) { long mid = left + (right - left) / 2, cnt = 0; for (long i = 5; mid / i > 0; i *= 5) { cnt += mid / i; } if (cnt == K) return 5; else if (cnt < K) left = mid + 1; else right = mid; } return 0; } };
下面这种解法也挺巧妙的,也是根据观察规律推出来的,我们首先来x为1到25的情况:
x: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
f(x): 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 6
g(x): 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 2
这里,f(x)是表示x!末尾零的个数,而g(x) = f(x) – f(x-1),那么我们其实还可以通过观察发现,f(x) = sum(g(x)).
我们再仔细观察上面的数字,发现g(x)有正值的时候都是当x是5的倍数的时候,那么我们来专门看一下x是5的倍数时的情况吧:
x: 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125
g(x): 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 3
仔细观察上面的红色数字,g(x)=1时,是5的倍数,g(x)=2时,都是25的倍数,g(x)=3时,是125的倍数,那么我们就有:
g(x) = 0 if x % 5 != 0,
g(x) >= 1 if x % 5 == 0,
g(x) >= 2 if x % 25 == 0.
如果我们继续将上面的数字写下去,我们可以发现规律,g(x)按照 1 1 1 1 x 的规律重复五次,第五次的时候x自增1。我们再继续观察:
当x=25时,g(x)=2,此时K=5被跳过了。
当x=50时,g(x)=2,此时K=11被跳过了。
当x=75时,g(x)=2,此时K=17被跳过了。
当x=100时,g(x)=2,此时K=23被跳过了。
当x=125时,g(x)=3,此时K=29,30被跳过了。
进一步,我们可以发现如下规律:
5(=1*5), 11(=6*1+5), 17(=6*2+5), 23(=6*3+5), 29(=6*4+5), 30(=6*5), 36(=31+5), 42(=31+6+5), 48(=31+6*2+5)
这些使得x不存在的K,出现都是有规律的,它们减去一个特定的基数base后,都是余5,而余1,2,3,4的,都是返回5。那么这个基数base,实际是1,6,31,156,…,是由 base = base * 5 + 1,不断构成的,通过这种不断对基数取余的操作,我们可以最终将K降为小于等于5的数,就可以直接返回结果了,参见代码如下:
解法三:
class Solution { public: int preimageSizeFZF(int K) { if (K < 5) return 5; int base = 1; while (base * 5 + 1 <= K) { base = base * 5 + 1; } if (K / base == 5) return 0; return preimageSizeFZF(K % base); } };
类似题目:
参考资料: