转载自
组合c(m,n)的计算方法
问题:求解组合数C(n,m),即从n个相同物品中取出m个的方案数,由于结果可能非常大,对结果模10007即可。
共四种方案。ps:注意使用限制。
方案1:
暴力求解,C(n,m)=n*(n-1)*…*(n-m+1)/m!,n<=15 ;
int Combination(int n, int m)
{
const int M = 10007;
int ans = 1;
for(int i=n; i>=(n-m+1); --i)
ans *= i;
while(m)
ans /= m--;
return ans % M;
}
int Combination(int n, int m)
{
const int M = 10007;
int ans = 1;
for(int i=n; i>=(n-m+1); --i)
ans *= i;
while(m)
ans /= m--;
return ans % M;
}
方案2:
打表,C(n,m)=C(n-1,m-1)+C(n-1,m),n<=10,000
const int M = 10007;
const int MAXN = 1000;
int C[MAXN+1][MAXN+1];
void Initial()
{
int i,j;
for(i=0; i<=MAXN; ++i)
{
C[0][i] = 0;
C[i][0] = 1;
}
for(i=1; i<=MAXN; ++i)
{
for(j=1; j<=MAXN; ++j)
C[i][j] = (C[i-1][j] + C[i-1][j-1]) % M;
}
}
int Combination(int n, int m)
{
return C[n][m];
}
const int M = 10007;
const int MAXN = 1000;
int C[MAXN+1][MAXN+1];
void Initial()
{
int i,j;
for(i=0; i<=MAXN; ++i)
{
C[0][i] = 0;
C[i][0] = 1;
}
for(i=1; i<=MAXN; ++i)
{
for(j=1; j<=MAXN; ++j)
C[i][j] = (C[i-1][j] + C[i-1][j-1]) % M;
}
}
int Combination(int n, int m)
{
return C[n][m];
}
方案3:
质因数分解,C(n,m)=n!/(m!*(n-m)!),C(n,m)=p1a1-b1-c1p2a2-b2-c2…pkak-bk-ck,n<=10,000,000
#include <cstdio>
const int maxn=1000000;
#include <vector>
using namespace std;
bool arr[maxn+1]={false};
vector<int> produce_prim_number()
{
vector<int> prim;
prim.push_back(2);
int i,j;
for(i=3;i*i<=maxn;i+=2)
{
if(!arr[i])
{
prim.push_back(i);
for(j=i*i;j<=maxn;j+=i)
arr[j]=true;
}
}
while(i<maxn)
{
if(!arr[i])
prim.push_back(i);
i+=2;
}
return prim;
}
//计算n!中素数因子p的指数
int cal(int x,int p)
{
int ans=0;
long long rec=p;
while(x>=rec)
{
ans+=x/rec;
rec*=p;
}
return ans;
}
//计算n的k次方对m取模,二分法
int pow(long long n,int k,int M)
{
long long ans=1;
while(k)
{
if(k&1)
{
ans=(ans*n)%M;
}
n=(n*n)%M;
k>>=1;
}
return ans;
}
//计算C(n,m)
int combination(int n,int m)
{
const int M=10007;
vector<int> prim=produce_prim_number();
long long ans=1;
int num;
for(int i=0;i<prim.size()&&prim[i]<=n;++i)
{
num=cal(n,prim[i])-cal(m,prim[i])-cal(n-m,prim[i]);
ans=(ans*pow(prim[i],num,M))%M;
}
return ans;
}
int main()
{
int m,n;
while(~scanf("%d%d",&m,&n),m&&n)
{
printf("%d\n",combination(m,n));
}
return 0;
}
方案4:
Lucas定理,将m,n化为p进制,有:C(n,m)=C(n0,m0)*C(n1,m1)…(mod p),算一个不是很大的C(n,m)%p,p为素数,化为线性同余方程,用扩展的欧几里德定理求解,n在int范围内,修改一下可以满足long long范围内。
#include <stdio.h>
const int M = 2013;
int ff[M+5]; //打表,记录n!,避免重复计算
//求最大公因数
int gcd(int a,int b)
{
if(b==0)
return a;
else
return gcd(b,a%b);
}
//解线性同余方程,扩展欧几里德定理
int x,y;
void Extended_gcd(int a,int b)
{
if(b==0)
{
x=1;
y=0;
}
else
{
Extended_gcd(b,a%b);
long t=x;
x=y;
y=t-(a/b)*y;
}
}
//计算不大的C(n,m)
int C(int a,int b)
{
if(b>a)
return 0;
b=(ff[a-b]*ff[b])%M;
a=ff[a];
int c=gcd(a,b);
a/=c;
b/=c;
Extended_gcd(b,M);
x=(x+M)%M;
x=(x*a)%M;
return x;
}
//Lucas定理
int Combination(int n, int m)
{
int ans=1;
int a,b;
while(m||n)
{
a=n%M;
b=m%M;
n/=M;
m/=M;
ans=(ans*C(a,b))%M;
}
return ans;
}
int main()
{
int i,m,n;
ff[0]=1;
for(i=1; i<=M; i++) //预计算n!
ff[i]=(ff[i-1]*i)%M;
while(~scanf("%d%d",&n, &m))
{
printf("%d\n",Combination(n,m));
}
return 0;
}
,