Given an array consisting of n
integers, find the contiguous subarray of given length k
that has the maximum average value. And you need to output the maximum average value.
Example 1:
Input: [1,12,-5,-6,50,3], k = 4 Output: 12.75 Explanation: Maximum average is (12-5-6+50)/4 = 51/4 = 12.75
Note:
- 1 <=
k
<=n
<= 30,000. - Elements of the given array will be in the range [-10,000, 10,000].
这道题给了我们一个数组nums,还有一个数字k,让我们找长度为k且平均值最大的子数组。由于子数组必须是连续的,所以我们不能给数组排序。那么怎么办呢,在博主印象中,计算子数组之和的常用方法应该是建立累加数组,然后我们可以快速计算出任意一个长度为k的子数组,用来更新结果res,从而得到最大的那个,参见代码如下:
解法一:
class Solution { public: double findMaxAverage(vector<int>& nums, int k) { int n = nums.size(); vector<int> sums = nums; for (int i = 1; i < n; ++i) { sums[i] = sums[i - 1] + nums[i]; } double mx = sums[k - 1]; for (int i = k; i < n; ++i) { mx = max(mx, (double)sums[i] - sums[i - k]); } return mx / k; } };
由于这道题子数组的长度k是确定的,所以我们其实没有必要建立整个累加数组,而是先算出前k个数字的和,然后就像维护一个滑动窗口一样,将窗口向右移动一位,即加上一个右边的数字,减去一个左边的数字,就等同于加上右边数字减去左边数字的差值,然后每次更新结果res即可,参见代码如下:
解法二:
class Solution { public: double findMaxAverage(vector<int>& nums, int k) { double sum = accumulate(nums.begin(), nums.begin() + k, 0), res = sum; for (int i = k; i < nums.size(); ++i) { sum += nums[i] - nums[i - k]; res = max(res, sum); } return res / k; } };
参考资料:
https://discuss.leetcode.com/topic/96134/c-simple-sliding-window-solution
https://discuss.leetcode.com/topic/96154/java-solution-sum-of-sliding-window