该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
思路:一行一行的放置皇后,判断皇后的位置是否符合条件,当放置到最后一行时,则所有皇后的位置放置完毕,保存棋盘活棋盘数加一。
#coding:utf-8
import copy
c = 0
def notdanger(b, row, x, y): #判断皇后的放置位置(x,y)是否满足每一行、每一列,斜线都只有(x,y)一个皇后
t1 = True
t2 = True
t3 = True
t4 = True
t5 = True
for iii in range(0, row):
if b[iii][y] == 1:
t1 = False
break
iii = x
jjj = y
while iii >= 0 and jjj >= 0:
if b[iii][jjj] == 1:
t2 = False
break
iii = iii - 1
jjj = jjj - 1
iii = x
jjj = y
while iii >= 0 and jjj < row:
if b[iii][jjj] == 1:
t3 = False
break
iii = iii - 1
jjj = jjj + 1
iii = x
jjj = y
while iii < row and jjj >= 0:
if b[iii][jjj] == 1:
t4 = False
break
iii = iii + 1
jjj = jjj - 1
iii = x
jjj = y
while iii < row and jjj < row:
if b[iii][jjj] == 1:
t5 = False
break
iii = iii + 1
jjj = jjj + 1
return t1 and t2 and t3 and t4 and t5
def eightqueen(a, row, i):
b = copy.deepcopy(a)
if i == 8: #一行一行的放置皇后,当放置到第8行时,结果满足条件,棋盘数+1
global c
c = c + 1
print c
else:
for ii in range(0, 8):
if notdanger(b, row, i, ii): #判断棋盘的(i, ii)位置是否符合要求
for jj in range(0, row):
b[i][jj] = 0
b[i][ii] = 1 #符合要求,将皇后放置在该位置
eightqueen(b, row, i + 1)
if __name__ == '__main__':
a = []
for i in range(0, 8):
b = []
for j in range(0, 8):
b.append(0)
a.append(b)
eightqueen(a, 8, 0) #a表示初始棋盘,8表示棋盘的行列数,0表示棋盘的第几行
#print c