聚类算法综述(2)

原文地址:聚类算法综述(2)
作者:hyman

(4)结果验证。一旦用聚类算法得到结果,就需要验证其正确性。

(5)结果判定。在许多情况下,应用领域的专家必须用其他实验数据和分析判定聚类结果,最后做出正确的结论。

聚类分析有很多种算法,每种算法都是优化了某一方面或某几方面的特征。聚类算法的优劣标准本身就是一个值得研究的问题,对于聚类的评价有不同的标准。现在通用的聚类算法都是从几个方面来衡量的,而没有完全使用量化的客观标准。下面给出六条关于聚类的主要标准:

(1)处理大的数据集的能力。

(2)处理任意形状,包括有间隙的嵌套的数据的能力。

(3)算法处理的结果与数据输入的顺序是否相关,也就是说算法是否独立于数据输入顺序。

(4)处理数据噪声的能力。

(5)是否需要预先知道聚类个数,是否需要用户给出领域知识。

(6)算法处理有很多属性数据的能力,也就是对数据维数是否敏感。

对于一个聚类算法可以从以上几个方面综合考虑。

2.2 聚类方法的数据结构

基于内存的聚类算法有以下两种代表性的数据结构:

数据矩阵(对象与变量结构):它用p个变量表现n个对

(1)        象,这种数据结构是关系表的形式,或看成n×p的矩阵。

x11 x 1f x1p

 :   :  :   :  :

xi1 xif  xip

 :  :   :   :  :

xn1 xnf xnp

 

(2)        相异度矩阵(对象对象结构):存储n个对象两两之间的近似性,表现形式是一个n×n维的矩阵。

 

 

0

d21 0

d31 d32 0

   :        :        :

dn1 dn2 0

 

这里dij)是对象i和对象j之间相异性的量化表示,通常为非负值,当两个对象ij越相似,其值越接近0;反之,则值越大。

2.2.1 标度变量

    区间标度变量是一个粗略线性标度的连续变量。用来计算相异度dij),其距离度量包括欧几里德距离,曼哈坦距离和明考斯基距离。

    首先实现数据的标准化,给定一个变量f的度量值,可以进行一下转化:

1)计算平均的绝对偏差Sf

Sf  = |x1f-mf|+|x2f-mf|+……+|xnf-mf|/n

这里x1f,……,xnffn个度量值,mff的平均值。

2)计算标准化的度量值:

Zif = xif-mf/sf

   

   

    原文作者:聚类算法
    原文地址: https://blog.csdn.net/ftxc_blog/article/details/12565679
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞