【opencv、机器学习】聚类算法——K-means

       首先要来了解的一个概念就是聚类简单地说就是把相似的东西分到一组,同 Classification (分类)不同,对于一个 classifier ,通常需要你告诉它“这个东西被分为某某类”这样一些例子,理想情况下,一个 classifier 会从它得到的训练集中进行“学习”,从而具备对未知数据进行分类的能力,这种提供训练数据的过程通常叫做 supervised learning (监督学习),而在聚类的时候,我们并不关心某一类是什么,我们需要实现的目标只是把相似的东西聚到一起,因此,一个聚类算法通常只需要知道如何计算相似 度就可以开始工作了,因此 clustering 通常并不需要使用训练数据进行学习,这在 Machine Learning 中被称作 unsupervised learning (无监督学习)。

  我们经常接触到的聚类分析,一般都是数值聚类,一种常见的做法是同时提取 N 种特征,将它们放在一起组成一个 N 维向量,从而得到一个从原始数据集合到 N 维向量空间的映射——你总是需要显式地或者隐式地完成这样一个过程,然后基于某种规则进行分类,在该规则下,同组分类具有最大的相似性

  假设我们提取到原始数据的集合为(x1x2, …, xn),并且每个xi为d维的向量,K-means聚类的目的就是,在给定分类组数k(k ≤ n)值的条件下,将原始数据分成k类 
S = {S1S2, …, Sk},在数值模型上,即对以下表达式求最小值

这里μi 表示分类S的平均值。

  那么在计算机编程中,其又是如何实现的呢?其算法步骤一般如下:

1、从D中随机取k个元素,作为k个簇的各自的中心。

2、分别计算剩下的元素到k个簇中心的相异度,将这些元素分别划归到相异度最低的簇。

3、根据聚类结果,重新计算k个簇各自的中心,计算方法是取簇中所有元素各自维度的算术平均数。

4、将D中全部元素按照新的中心重新聚类。

5、重复第4步,直到聚类结果不再变化。

6、将结果输出。

  用数学表达式来说,

设我们一共有 N 个数据点需要分为 K 个 cluster ,k-means 要做的就是最小化

这个函数,其中  在数据点 n 被归类到 cluster k 的时候为 1 ,否则为 0 。直接寻找  和  来最小化  并不容易,不过我们可以采取迭代的办法:先固定  ,选择最优的  ,很容易看出,只要将数据点归类到离他最近的那个中心就能保证  最小。下一步则固定 ,再求最优的 。将  对  求导并令导数等于零,很容易得到  最小的时候  应该满足:

亦即  的值应当是所有 cluster k 中的数据点的平均值。由于每一次迭代都是取到  的最小值,因此  只会不断地减小(或者不变),而不会增加,这保证了 k-means 最终会到达一个极小值。虽然 k-means 并不能保证总是能得到全局最优解,但是对于这样的问题,像 k-means 这种复杂度的算法,这样的结果已经是很不错的了。

首先 3 个中心点被随机初始化,所有的数据点都还没有进行聚类,默认全部都标记为红色,如下图所示:

然后进入第一次迭代:按照初始的中心点位置为每个数据点着上颜色,重新计算 3 个中心点,结果如下图所示:

可以看到,由于初始的中心点是随机选的,这样得出来的结果并不是很好,接下来是下一次迭代的结果:

可以看到大致形状已经出来了。再经过两次迭代之后,基本上就收敛了,最终结果如下:

不过正如前面所说的那样 k-means 也并不是万能的,虽然许多时候都能收敛到一个比较好的结果,但是也有运气不好的时候会收敛到一个让人不满意的局部最优解,例如选用下面这几个初始中心点:

最终会收敛到这样的结果:

  整体来讲,K-means算法的聚类思想比较简单明了,并且聚类效果也还算可以,算是一种简单高效应用广泛的 clustering 方法,接下来,我将讨论其代码实现过程。


    原文作者:聚类算法
    原文地址: https://blog.csdn.net/Summer_And_Opencv/article/details/74446547
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞