You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ Because the 4th row is incomplete, we return 3.
这道题给了我们n个硬币,让我们按一定规律排列,第一行放1个,第二行放2个,以此类推,问我们有多少行能放满。通过分析题目中的例子可以得知最后一行只有两种情况,放满和没放满。由于是按等差数列排放的,我们可以快速计算出前i行的硬币总数。我们先来看一种O(n)的方法,非常简单粗暴,就是从第一行开始,一行一行的从n中减去,如果此时剩余的硬币没法满足下一行需要的硬币数了,我们之间返回当前行数即可,参见代码如下:
解法一:
class Solution { public: int arrangeCoins(int n) { int cur = 1, rem = n - 1; while (rem >= cur + 1) { ++cur; rem -= cur; } return n == 0 ? 0 : cur; } };
再来看一种O(lgn)的方法,用到了二分搜索法,我们搜索前i行之和刚好大于n的临界点,这样我们减一个就是能排满的行数,注意我们计算前i行之和有可能会整型溢出,所以我们需要将变量都定义成长整型,参见代码如下:
解法二:
class Solution { public: int arrangeCoins(int n) { if (n <= 1) return n; long low = 1, high = n; while (low < high) { long mid = low + (high - low) / 2; if (mid * (mid + 1) / 2 <= n) low = mid + 1; else high = mid; } return low - 1; } };
再来看一种数学解法O(1),充分利用了等差数列的性质,我们建立等式, n = (1 + x) * x / 2, 我们用一元二次方程的求根公式可以得到 x = (-1 + sqrt(8 * n + 1)) / 2, 然后取整后就是能填满的行数,一行搞定简直丧心病狂啊:
解法三:
class Solution { public: int arrangeCoins(int n) { return (int)((-1 + sqrt(1 + 8 * (long)n)) / 2); } };
参考资料:
https://discuss.leetcode.com/topic/65664/my-55ms-c-solution
https://discuss.leetcode.com/topic/65575/java-o-1-solution-math-problem
https://discuss.leetcode.com/topic/65631/c-three-solutions-o-n-o-logn-o-1/2