Design a data structure that supports all following operations in average O(1) time.
Note: Duplicate elements are allowed.
insert(val)
: Inserts an item val to the collection.remove(val)
: Removes an item val from the collection if present.getRandom
: Returns a random element from current collection of elements. The probability of each element being returned is linearly related to the number of same value the collection contains.
Example:
// Init an empty collection. RandomizedCollection collection = new RandomizedCollection(); // Inserts 1 to the collection. Returns true as the collection did not contain 1. collection.insert(1); // Inserts another 1 to the collection. Returns false as the collection contained 1. Collection now contains [1,1]. collection.insert(1); // Inserts 2 to the collection, returns true. Collection now contains [1,1,2]. collection.insert(2); // getRandom should return 1 with the probability 2/3, and returns 2 with the probability 1/3. collection.getRandom(); // Removes 1 from the collection, returns true. Collection now contains [1,2]. collection.remove(1); // getRandom should return 1 and 2 both equally likely. collection.getRandom();
这题是之前那道Insert Delete GetRandom O(1)的拓展,与其不同的是,之前那道题不能有重复数字,而这道题可以有,那么就不能像之前那道题那样建立每个数字和其坐标的映射了,但是我们可以建立数字和其所有出现位置的集合之间的映射,虽然写法略有不同,但是思路和之前那题完全一样,都是将数组最后一个位置的元素和要删除的元素交换位置,然后删掉最后一个位置上的元素。对于insert函数,我们将要插入的数字在nums中的位置加入m[val]数组的末尾,然后在数组nums末尾加入val,我们判断是否有重复只要看m[val]数组只有刚加的val一个值还是有多个值。remove函数是这题的难点,我们首先看哈希表中有没有val,没有的话直接返回false。然后我们取出nums的尾元素,把尾元素哈希表中的位置数组中的最后一个位置更新为m[val]的尾元素,这样我们就可以删掉m[val]的尾元素了,如果m[val]只有一个元素,那么我们把这个映射直接删除。然后我们将nums数组中的尾元素删除,并把尾元素赋给val所在的位置,注意我们在建立哈希表的映射的时候需要用堆而不是普通的vector数组,因为我们每次remove操作后都会移除nums数组的尾元素,如果我们用vector来保存数字的坐标,而且只移出末尾数字的话,有可能出现前面的坐标大小超过了此时nums的大小的情况,就会出错,所以我们用优先队列对所有的相同数字的坐标进行自动排序,每次把最大位置的坐标移出即可,参见代码如下:
解法一:
class RandomizedCollection { public: /** Initialize your data structure here. */ RandomizedCollection() {} /** Inserts a value to the collection. Returns true if the collection did not already contain the specified element. */ bool insert(int val) { m[val].push(nums.size()); nums.push_back(val); return m[val].size() == 1; } /** Removes a value from the collection. Returns true if the collection contained the specified element. */ bool remove(int val) { if (m[val].empty()) return false; int idx = m[val].top(); m[val].pop(); if (nums.size() - 1 != idx) { int t = nums.back(); nums[idx] = t; m[t].pop(); m[t].push(idx); } nums.pop_back(); return true; } /** Get a random element from the collection. */ int getRandom() { return nums[rand() % nums.size()]; } private: vector<int> nums; unordered_map<int, priority_queue<int>> m; };
有网友指出上面的方法其实不是真正的O(1)时间复杂度,因为优先队列的push不是常数级的,博主一看果然是这样的,为了严格的遵守O(1)的时间复杂度,我们将优先队列换成unordered_set,其插入删除的操作都是常数量级的,其他部分基本不用变,参见代码如下:
解法二:
class RandomizedCollection { public: /** Initialize your data structure here. */ RandomizedCollection() {} /** Inserts a value to the collection. Returns true if the collection did not already contain the specified element. */ bool insert(int val) { m[val].insert(nums.size()); nums.push_back(val); return m[val].size() == 1; } /** Removes a value from the collection. Returns true if the collection contained the specified element. */ bool remove(int val) { if (m[val].empty()) return false; int idx = *m[val].begin(); m[val].erase(idx); if (nums.size() - 1 != idx) { int t = nums.back(); nums[idx] = t; m[t].erase(nums.size() - 1); m[t].insert(idx); } nums.pop_back(); return true; } /** Get a random element from the collection. */ int getRandom() { return nums[rand() % nums.size()]; } private: vector<int> nums; unordered_map<int, unordered_set<int>> m; };
类似题目:
参考资料:
https://leetcode.com/problems/insert-delete-getrandom-o1-duplicates-allowed/
https://discuss.leetcode.com/topic/53659/c-two-solutions
https://discuss.leetcode.com/topic/54381/c-128m-solution-real-o-1-solution