Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Given matrix = [ [1, 0, 1], [0, -2, 3] ] k = 2
The answer is 2
. Because the sum of rectangle [[0, 1], [-2, 3]]
is 2 and 2 is the max number no larger than k (k = 2).
Note:
- The rectangle inside the matrix must have an area > 0.
- What if the number of rows is much larger than the number of columns?
Credits:
Special thanks to @fujiaozhu for adding this problem and creating all test cases.
这道题给了我们一个二维数组,让我们求和不超过的K的最大子矩形,那么我们首先可以考虑使用brute force来解,就是遍历所有的子矩形,然后计算其和跟K比较,找出不超过K的最大值即可。就算是暴力搜索,我们也可以使用优化的算法,比如建立累加和,参见之前那道题Range Sum Query 2D – Immutable,我们可以快速求出任何一个区间和,那么下面的方法就是这样的,当遍历到(i, j)时,我们计算sum(i, j),表示矩形(0, 0)到(i, j)的和,然后我们遍历这个矩形中所有的子矩形,计算其和跟K相比,这样既可遍历到原矩形的所有子矩形,参见代码如下:
解法一:
class Solution { public: int maxSumSubmatrix(vector<vector<int>>& matrix, int k) { if (matrix.empty() || matrix[0].empty()) return 0; int m = matrix.size(), n = matrix[0].size(), res = INT_MIN; int sum[m][n]; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { int t = matrix[i][j]; if (i > 0) t += sum[i - 1][j]; if (j > 0) t += sum[i][j - 1]; if (i > 0 && j > 0) t -= sum[i - 1][j - 1]; sum[i][j] = t; for (int r = 0; r <= i; ++r) { for (int c = 0; c <= j; ++c) { int d = sum[i][j]; if (r > 0) d -= sum[r - 1][j]; if (c > 0) d -= sum[i][c - 1]; if (r > 0 && c > 0) d += sum[r - 1][c - 1]; if (d <= k) res = max(res, d); } } } } return res; } };
下面这个算法进一步的优化了运行时间,这个算法是基于计算二维数组中最大子矩阵和的算法,可以参见youtube上的这个视频Maximum Sum Rectangular Submatrix in Matrix dynamic programming/2D kadane。这个算法巧妙在把二维数组按行或列拆成多个一维数组,然后利用一维数组的累加和来找符合要求的数字,这里用了lower_bound来加快我们的搜索速度,也可以使用二分搜索法来替代。我们建立一个集合set,然后开始先放个0进去,为啥要放0呢,因为我们要找lower_bound(curSum – k),当curSum和k相等时,0就可以被返回了,这样我们就能更新结果了。由于我们对于一维数组建立了累积和,那么sum[i,j] = sum[i] – sum[j],其中sums[i,j]就是目标子数组需要其和小于等于k,然后sums[j]是curSum,而sum[i]就是我们要找值,当我们使用二分搜索法找sum[i]时,sum[i]的和需要>=sum[j] – k,所以也可以使用lower_bound来找,参见代码如下:
解法二:
class Solution { public: int maxSumSubmatrix(vector<vector<int>>& matrix, int k) { if (matrix.empty() || matrix[0].empty()) return 0; int m = matrix.size(), n = matrix[0].size(), res = INT_MIN; for (int i = 0; i < n; ++i) { vector<int> sum(m, 0); for (int j = i; j < n; ++j) { for (int k = 0; k < m; ++k) { sum[k] += matrix[k][j]; } int curSum = 0, curMax = INT_MIN; set<int> s; s.insert(0); for (auto a : sum) { curSum += a; auto it = s.lower_bound(curSum - k); if (it != s.end()) curMax = max(curMax, curSum - *it); s.insert(curSum); } res = max(res, curMax); } } return res; } };
类似题目:
Range Sum Query 2D – Immutable
Maximum Size Subarray Sum Equals k
参考资料:
https://leetcode.com/discuss/109847/2-accepted-java-solution
https://leetcode.com/discuss/109749/accepted-c-codes-with-explanation-and-references