白话经典算法系列之五 归并排序的实现

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。

首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。

[cpp] view plain copy

  1. //将有序数组a[]和b[]合并到c[]中  
  2. void MemeryArray(int a[], int n, int b[], int m, int c[])  
  3. {  
  4.     int i, j, k;  
  5.   
  6.     i = j = k = 0;  
  7.     while (i < n && j < m)  
  8.     {  
  9.         if (a[i] < b[j])  
  10.             c[k++] = a[i++];  
  11.         else  
  12.             c[k++] = b[j++];   
  13.     }  
  14.   
  15.     while (i < n)  
  16.         c[k++] = a[i++];  
  17.   
  18.     while (j < m)  
  19.         c[k++] = b[j++];  
  20. }  

可以看出合并有序数列的效率是比较高的,可以达到O(n)。

解决了上面的合并有序数列问题,再来看归并排序,其的基本思路就是将数组分成二组A,B,如果这二组组内的数据都是有序的,那么就可以很方便的将这二组数据进行排序。如何让这二组组内数据有序了?

可以将A,B组各自再分成二组。依次类推,当分出来的小组只有一个数据时,可以认为这个小组组内已经达到了有序,然后再合并相邻的二个小组就可以了。这样通过先递归的分解数列,再合并数列就完成了归并排序。

[cpp] view plain copy

  1. //将有二个有序数列a[first…mid]和a[mid…last]合并。  
  2. void mergearray(int a[], int first, int mid, int last, int temp[])  
  3. {  
  4.     int i = first, j = mid + 1;  
  5.     int m = mid,   n = last;  
  6.     int k = 0;  
  7.       
  8.     while (i <= m && j <= n)  
  9.     {  
  10.         if (a[i] <= a[j])  
  11.             temp[k++] = a[i++];  
  12.         else  
  13.             temp[k++] = a[j++];  
  14.     }  
  15.       
  16.     while (i <= m)  
  17.         temp[k++] = a[i++];  
  18.       
  19.     while (j <= n)  
  20.         temp[k++] = a[j++];  
  21.       
  22.     for (i = 0; i < k; i++)  
  23.         a[first + i] = temp[i];  
  24. }  
  25. void mergesort(int a[], int first, int last, int temp[])  
  26. {  
  27.     if (first < last)  
  28.     {  
  29.         int mid = (first + last) / 2;  
  30.         mergesort(a, first, mid, temp);    //左边有序  
  31.         mergesort(a, mid + 1, last, temp); //右边有序  
  32.         mergearray(a, first, mid, last, temp); //再将二个有序数列合并  
  33.     }  
  34. }  
  35.   
  36. bool MergeSort(int a[], int n)  
  37. {  
  38.     int *p = new int[n];  
  39.     if (p == NULL)  
  40.         return false;  
  41.     mergesort(a, 0, n – 1, p);  
  42.     delete[] p;  
  43.     return true;  
  44. }  

 

归并排序的效率是比较高的,设数列长为N,将数列分开成小数列一共要logN步,每步都是一个合并有序数列的过程,时间复杂度可以记为O(N),故一共为O(N*logN)。因为归并排序每次都是在相邻的数据中进行操作,所以归并排序在O(N*logN)的几种排序方法(快速排序,归并排序,希尔排序,堆排序)也是效率比较高的。

点赞