[LeetCode] Power of Four 判断4的次方数

 

Given an integer (signed 32 bits), write a function to check whether it is a power of 4.

Example:
Given num = 16, return true. Given num = 5, return false.

Follow up: Could you solve it without loops/recursion?

Credits:
Special thanks to @yukuairoy for adding this problem and creating all test cases.

 

这道题让我们判断一个数是否为4的次方数,那么最直接的方法就是不停的除以4,看最终结果是否为1,参见代码如下:

 

解法一:

class Solution {
public:
    bool isPowerOfFour(int num) {
        while (num && (num % 4 == 0)) {
            num /= 4;
        }
        return num == 1;
    }
};

 

还有一种方法是跟Power of Three中的解法三一样,使用换底公式来做,讲解请参见之前那篇博客:

 

解法二:

class Solution {
public:
    bool isPowerOfFour(int num) {
        return num > 0 && int(log10(num) / log10(4)) - log10(num) / log10(4) == 0;
    }
};

 

下面这种方法是网上比较流行的一种解法,思路很巧妙,首先根据Power of Two中的解法二,我们知道num & (num – 1)可以用来判断一个数是否为2的次方数,更进一步说,就是二进制表示下,只有最高位是1,那么由于是2的次方数,不一定是4的次方数,比如8,所以我们还要其他的限定条件,我们仔细观察可以发现,4的次方数的最高位的1都是计数位,那么我们只需与上一个数(0x55555555) <==> 1010101010101010101010101010101,如果得到的数还是其本身,则可以肯定其为4的次方数:

 

解法三:

class Solution {
public:
    bool isPowerOfFour(int num) {
        return num > 0 && !(num & (num - 1)) && (num & 0x55555555) == num;
    }
};

或者我们在确定其是2的次方数了之后,发现只要是4的次方数,减1之后可以被3整除,所以可以写出代码如下:

 

解法四:

class Solution {
public:
    bool isPowerOfFour(int num) {
        return num > 0 && !(num & (num - 1)) && (num - 1) % 3 == 0;
    }
};

 

类似题目:

Power of Three

Power of Two

 

参考资料:

https://leetcode.com/discuss/97944/c-solution-using-bit-manipulation-with-one-line-code

 

    原文作者:Grandyang
    原文地址: http://www.cnblogs.com/grandyang/p/5403783.html
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞