朴素贝叶斯分类: 使用案例

1, 全概率公式:

《朴素贝叶斯分类: 使用案例》
《朴素贝叶斯分类: 使用案例》

2, 贝叶斯公式:

《朴素贝叶斯分类: 使用案例》

3,朴素贝叶斯分类器:

定义:

  • 1,设 x= {a1, a2, a3…, am } 为一个待分类项,而每个a为x的一个特征属性。
  • 2,有类别集合:C ={ y1, y2, y3 …, yn }
  • 3,计算一个概率集合U : P(y1|x), P(y2|x), P(y3|x)…P(yn|x)
  • 4,x最可能的类别 <==> 集合U中,概率的取最大值时,是类别集合C中的哪个?

朴素贝叶斯分类器是一个概率分类器。假设现有的类别C={c1,c2,……cm}。给定一篇文档d,文档d最有可能属于哪个类呢?这个问题用数学公式表示如下:

《朴素贝叶斯分类: 使用案例》
由于每个概率值很小(比如0.0001)若干个很小的概率值直接相乘,
得到的结果会越来越小。为了避免计算过程出现下溢(underflower),
引入对数函数Log, 最终得到:
《朴素贝叶斯分类: 使用案例》

    原文作者:算法
    原文地址: https://www.twblogs.net/a/5bd3add32b717778ac20afe9
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞

发表评论

电子邮件地址不会被公开。 必填项已用*标注