金字塔Lucas-Kannade算法:
LK算法有三个假设:亮度恒定,即图像场景中目标的像素在帧间运动时外观上保持不变;时间连续或者运动是”小运动“,即图像的运动随时间的变化比较缓慢;空间一致,即一个场景中同一表面上邻近的点具有相似的运动。然而,对于大多数30HZ的摄像机,大而连贯的运动是普遍存在的情况,所以LK光流正因为这个原因在实际中的跟踪效果并不是很好。我们需要大的窗口来捕获大的运动,而大窗口往往违背运动连贯的假设!而图像金字塔可以解决这个问题,于是乎,金字塔Lucas-Kanade就提出来了。
金字塔Lucas-Kanade跟踪方法是:在图像金字塔的最高层计算光流,用得到的运动估计结果作为下一层金字塔的起始点,重复这个过程直到到达金字塔的最底层。这样就将不满足运动的假设可能性降到最小从而实现对更快和更长的运动的跟踪。
https://blog.csdn.net/ap1005834/article/details/51226660
C++接口:
void calcOpticallFlowPyrLK (InuputArray prevImg, InputArray nextImg, InputArray prevPts, InputOutputArray
nextPts, OutputArray status, OutputArray err, Size winSize = Size(21,21), int maxLevel = 3, TermCriteria
criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), int flags = 0, double minEigThreshold = 1e-4);
-prevImg: 深度为8位的前一帧图像或金字塔图像。
-nextImg:和prevImg有相同的大小和类型,后一帧图像或金字塔。
-prevPts:计算光流所需要的输入2D点矢量,点座标必须是单精度浮点数。
-nextPts:输出2D点矢量(也是单精度浮点数座标),点矢量中包含的是在后一帧图像上计算得到的输入特征新位置。
-status:输出状态矢量(元素是无符号char类型,uchar),如果相应特征的流发现则矢量元素置为1,否则,为0。
-err:输出误差矢量。
-winSize:每个金字塔层搜索窗大小。
-maxLevel:金字塔层的最大数目;如果置0,金字塔不使用(单层);如果置1,金字塔2层,等等以此类推。
-criteria:指定搜索算法收敛迭代的类型
-minEigTheshold:算法计算的光流等式的2×2常规矩阵的最小特征值。