AVL树C++实现

用类封装AVL的几个属性,应该没有问题,如果有错请告知我,谢谢

其中打印树参考http://www.cnblogs.com/skywang12345/p/3577479.html

头文件

#include <iostream>
#include <string>
#include <iomanip>

using namespace std;

void testavl();

主函数

#include "Header.h"

int main()
{
    testavl();
    return 0;
}

AVL类实现

#include "Header.h"

struct node
{
    node* leftchild;
    node* rightchild;
    node* parents;
    int key;
    node(){};
    node(int a){ leftchild = NULL; rightchild = NULL; parents = NULL; key = a; };
};

class AVL
{
public:
    AVL();
    node* root_node;
    int Height(node* nd);
    void Insert(node* nd);
    void LeftRotate(node* nd);
    void RightRotate(node* nd);
    node* MinChild(node* nd);
    void Transplant(node *u, node *v);
    void Delete(node* nd);
    void Delete(int value);
    void InsertFixup(node* nd);
    void DeleteFixup(node* nd);
};

AVL::AVL()
{
    root_node = NULL;//用哨兵编程会简单一点,写的时候没有用哨兵
    
}




inline int max(int x, int y)
{
    return x > y ? x : y;
}

node* AVL::MinChild(node* nd) //返回以nd为根节点的子树的关键词最小节点
{
    node* min;
    min = NULL;
    while (nd)
    {
        min = nd;
        nd = nd->leftchild;
    }

    return min;
}

void AVL::Delete(node* nd)
{
    if (nd->leftchild == NULL && nd->rightchild == NULL)
    {
        if (nd->parents == NULL)
        {
            root_node == NULL;
        }
        else
        {
            if (nd == nd->parents->leftchild)
            {
                nd->parents->leftchild = NULL;
            }
            else
            {
                nd->parents->rightchild = NULL;
            }
            DeleteFixup(nd->parents);
        }
    }
    else
    {
        if (nd->leftchild == NULL)
        {
            if (nd->rightchild)
            {
                Transplant(nd, nd->rightchild);
            }
            DeleteFixup(nd->parents);
        }
        else if (nd->rightchild == NULL)
        {
            if (nd->leftchild)
            {
                Transplant(nd, nd->leftchild);
            }
            DeleteFixup(nd->parents);
        }
        else
        {
            node* z;
            z = MinChild(nd->rightchild);
            node* x;
            x = z->parents;
            if (z->parents != nd)
            {
                Transplant(z, z->rightchild);
                z->rightchild = nd->rightchild;
                z->rightchild->parents = z;
            }
            else
            {
                x = z;
            }
            Transplant(nd, z);
            z->leftchild = nd->leftchild;
            z->leftchild->parents = z;
            DeleteFixup(x);
        }
    }
    
    
    

}

int AVL::Height(node* nd)
{
    if (nd == NULL)
    {
        return 0;
    }
    else
    {
        return max(Height(nd->leftchild), Height(nd->rightchild)) + 1;
    }
}

void AVL::Transplant(node *u, node *v)
{
    
    if (/*root_node == u*/u->parents == NULL)
    {
        root_node = v;
    }
    else if (u == u->parents->leftchild)
    {
        u->parents->leftchild = v;
    }
    else
    {
        u->parents->rightchild = v;
    }
    if (v)
    {
        v->parents = u->parents;
    }
    
}

void AVL::Insert(node* nd)
{
    node* x = new node;
    x = root_node;
    node* y = NULL;
    
    while (x)
    {
        y = x;
        if (nd->key > x->key)
        {
            x = x->rightchild;
        }
        else
        {
            x = x->leftchild;
        }
    }

    if (y == NULL)
    {
        root_node = nd;
    }
    else
    {
        nd->parents = y;

        if (nd->key > y->key)
        {
            y->rightchild = nd;
        }
        else
        {
            y->leftchild = nd;
        }
    }

    if (nd->parents != NULL)
    {
        InsertFixup(nd->parents);
    }
    
}


void AVL::InsertFixup(node* nd)
{
    node* r;// record_location;
    node* r_p;// parents of r;
    r = nd;
    

    while (r->parents != NULL)
    {
 		r_p = r->parents;

        int r_bf = Height(r->rightchild) - Height(r->leftchild);//可以写成节点的一个属性
        //int rp_bf = Height(r_p->rightchild) - Height(r_p->leftchild);///////

        int rp_bf = 0;
        int rr = Height(r_p->rightchild);
        int rl = Height(r_p->leftchild);
        rp_bf = rr - rl;

        if (rp_bf == 2)// 
        {
            if (r_bf == 1)
            {
                LeftRotate(r_p);
            }
            else
            {
                RightRotate(r);
                LeftRotate(r->parents->parents);
                //RLRotate
            }
        }
        else if (rp_bf == -2)
        {
            if (r_bf == 1)
            {
                LeftRotate(r);
                RightRotate(r->parents->parents);
            }
            else
            {
                RightRotate(r_p);
            }
        }

        r = r->parents;
        if (r == NULL)
        {
            break;
        }
    }
}


void AVL::DeleteFixup(node* nd)
{
    while (nd != NULL)
    {
        if (Height(nd->rightchild) - Height(nd->leftchild) == -2)
        {
            if (Height(nd->leftchild->rightchild) - Height(nd->leftchild->leftchild) == -1)
            {
                RightRotate(nd);
            }
            else
            {
                LeftRotate(nd->leftchild);
                RightRotate(nd);
            }
        }
        else if (Height(nd->rightchild) - Height(nd->leftchild) == 2)
        {
            if (Height(nd->rightchild->rightchild) - Height(nd->rightchild->leftchild) == -1)
            {
                RightRotate(nd->rightchild);
                LeftRotate(nd);
            }
        }

        nd = nd->parents;
    }
}


void AVL::LeftRotate(node* nd)
{
    node* y;
    y = nd->rightchild;
    nd->rightchild = y->leftchild;

    if (y->leftchild != NULL)
    {
        y->leftchild->parents = nd;
    }

    y->parents = nd->parents;

    if (nd->parents == NULL)
    {
        root_node = y;
    }
    else if (nd == nd->parents->leftchild)
    {
        nd->parents->leftchild = y;
    }
    else
    {
        nd->parents->rightchild = y;
    }

    y->leftchild = nd;
    nd->parents = y;
}

void AVL::RightRotate(node* nd)
{
    node* y;
    y = nd->leftchild;
    nd->leftchild = y->rightchild;

    if (y->rightchild != NULL)
    {
        y->rightchild->parents = nd;
    }

    y->parents = nd->parents;

    if (nd->parents == NULL)
    {
        root_node = y;
    }
    else if (nd == nd->parents->leftchild)
    {
        nd->parents->leftchild = y;
    }
    else
    {
        nd->parents->rightchild = y;
    }

    y->rightchild = nd;
    nd->parents = y;
}




void PrintTree(node* nd, int nodekey, int direction) //打印以nd为根的子树的所有元素
{
    if (nd != NULL)
    {
        if (direction == 0)
        {
            cout << setw(2) << nd->key << " is root" << endl;
        }
        else
        {
            string s;
            s = direction == 1 ? "right" : "left";
            cout <<setw(2) << nd->key << " is " << setw(2) << nodekey << "'s ";
            cout <<setw(6) <<  s;
            cout << " child" << endl;
        }
        PrintTree(nd->leftchild, nd->key, -1);
        PrintTree(nd->rightchild, nd->key, 1);
    }

}

void testavl()
{
    
    AVL test_tree;
    int nodekey[16] = { 3, 2, 1, 4, 5, 6, 7, 16, 15, 14, 13, 12, 11, 10, 8, 9 };
    node* test_nodes = new node[16];

    for (int i = 0; i < 16; i++)
    {

        test_nodes[i].key = nodekey[i];
        test_nodes[i].leftchild = test_nodes[i].rightchild = test_nodes[i].parents = NULL;
        test_tree.Insert(&test_nodes[i]);
        cout << i << endl;
    }
    
    cout << "生成的AVL为:" << endl;
    PrintTree(test_tree.root_node, test_tree.root_node->key, 0);
    test_tree.Delete(test_tree.root_node);

    cout << "删除根节点之后的AVL为:" << endl;
    PrintTree(test_tree.root_node, test_tree.root_node->key, 0);
    
}

    原文作者:AVL树
    原文地址: https://blog.csdn.net/sinat_15652045/article/details/76304627
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞