AVL树的平衡调整,LL,LR,RR,RL旋转 (二)

1. 概述

AVL树是最早提出的自平衡二叉树,在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树。AVL树得名于它的发明者G.M. Adelson-Velsky和E.M. Landis。AVL树种查找、插入和删除在平均和最坏情况下都是O(log n),增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。本文介绍了AVL树的设计思想和基本操作。

2. 基本术语

有四种种情况可能导致二叉查找树不平衡,分别为:

(1)LL:插入一个新节点到根节点的左子树(Left)的左子树(Left),导致根节点的平衡因子由1变为2

(2)RR:插入一个新节点到根节点的右子树(Right)的右子树(Right),导致根节点的平衡因子由-1变为-2

(3)LR:插入一个新节点到根节点的左子树(Left)的右子树(Right),导致根节点的平衡因子由1变为2

(4)RL:插入一个新节点到根节点的右子树(Right)的左子树(Left),导致根节点的平衡因子由-1变为-2

针对四种种情况可能导致的不平衡,可以通过旋转使之变平衡。有两种基本的旋转:

(1)左旋转:将根节点旋转到(根节点的)右孩子的左孩子位置

(2)右旋转:将根节点旋转到(根节点的)左孩子的右孩子位置

3. AVL树的旋转操作

AVL树的基本操作是旋转,有四种旋转方式,分别为:左旋转,右旋转,左右旋转(先左后右),右左旋转(先右后左),实际上,这四种旋转操作两两对称,因而也可以说成两类旋转操作。

基本的数据结构:

1 2 3 4 5 6 7 8 9 10 11 12 13 typedef struct Node* Tree; typedef struct Node* Node_t; typedef Type int ; struct Node{ Node_t left; Node_t right; int height; Type data; }; int Height(Node_t node) { return node->height; }

3.1 LL

LL情况需要右旋解决,如下图所示:

代码为:

1 2 3 4 5 6 7 8 Node_t RightRotate(Node_t a) { b = a->left; a->left = b->right; b->right = a; a->height = Max(Height(a->left), Height(a->right)); b->height = Max(Height(b->left), Height(b->right)); return b; }

3.2 RR

RR情况需要左旋解决,如下图所示:

代码为:

1 2 3 4 5 6 7 8 Node_t LeftRotate(Node_t a) { b = a->right; a->right = b->left; b->left = a; a->height = Max(Height(a->left), Height(a->right)); b->height = Max(Height(b->left), Height(b->right)); return b; }

3.3 LR

LR情况需要左右(先B左旋转,后A右旋转)旋解决,如下图所示:

代码为:

1 2 3 4 Node_t LeftRightRotate(Node_t a) { a->left = LeftRotate(a->left); return RightRotate(a); }

3.4 RL

RL情况需要右左旋解决(先B右旋转,后A左旋转),如下图所示:

代码为:

1 2 3 4 Node_t RightLeftRotate(Node_t a) { a->right = RightRotate(a->right); return LeftRotate(a); }

 

 

#include<stdio.h>
#include <stdlib.h>

typedef struct _Tree
{
 int nValue;
 struct _Tree* pLeft;
 struct _Tree* pRight;
 struct _Tree* pFather;
}Tree;

Tree* root = NULL;

void CreateTree()
{

 root = (Tree*)malloc(sizeof(Tree));
 root->nValue = 1;
 root->pFather = NULL;

 root->pLeft = (Tree*)malloc(sizeof(Tree));
 root->pLeft->nValue = 2;
 root->pLeft->pFather = root;

 root->pLeft->pLeft = (Tree*)malloc(sizeof(Tree));
 root->pLeft->pLeft->nValue = 4;
 root->pLeft->pLeft->pLeft = NULL;
 root->pLeft->pLeft->pRight = NULL;
 root->pLeft->pLeft->pFather = root->pLeft;

 root->pLeft->pRight = (Tree*)malloc(sizeof(Tree));
 root->pLeft->pRight->nValue = 5;
 root->pLeft->pRight->pLeft = NULL;
 root->pLeft->pRight->pRight = NULL;
 root->pLeft->pRight->pFather = root->pLeft;

 

 root->pRight = (Tree*)malloc(sizeof(Tree));
 root->pRight->nValue = 3;
 root->pRight->pLeft = NULL;
 root->pRight->pRight = NULL;
 root->pRight->pFather = root;
}

 

void Rotate_Right(Tree* tree)
{
 Tree* temp = tree->pLeft;
 // 修改三个子节点
 tree->pLeft = temp->pRight;
 temp->pRight = tree;
 if (tree->pFather == NULL)
 {
  root = temp;
 }
 else
 {
  //  看  tree   原来  放在他父亲节点的  左边还是右边
  if (tree->pFather->pLeft == tree)
  {
   tree->pFather->pLeft = temp;
  }
  else
  {
   tree->pFather->pRight = temp;
  }
 }
 // 修改 三个父亲
 temp->pFather = tree->pFather;
 tree->pFather = temp;
 //   看 tree  有没有左
 if(tree->pLeft != NULL)
 {
  tree->pLeft->pFather = tree;
 }
}

void Rotate_Left(Tree* tree)
{

 Tree* temp = tree->pRight;
 // 修改三个子节点
 tree->pRight = temp->pLeft;
 temp->pLeft = tree;
 if (tree->pFather == NULL)
 {
  root = temp;
 }
 else
 {
  //  看  tree   原来  放在他父亲节点的  左边还是右边
  if (tree->pFather->pLeft == tree)
  {
   tree->pFather->pLeft = temp;
  }
  else
  {
   tree->pFather->pRight = temp;
  }
 }
 // 修改 三个父亲
 temp->pFather = tree->pFather;
 tree->pFather = temp;
 //   看 tree  有没有左
 if(tree->pRight != NULL)
 {
  tree->pRight->pFather = tree;
 }
}

void Qian(Tree* tree)
{
 if (tree)
 {
  printf(“%d “,tree->nValue);
  Qian(tree->pLeft);
  Qian(tree->pRight);
 }
}

int main()
{

 CreateTree();
 Qian(root);
 printf(“\n———————–\n”);

 Rotate_Right(root);
 Qian(root);
 printf(“\n———————–\n”);

 Rotate_Left(root);
 Qian(root);
 printf(“\n———————–\n”);

 

 system(“pause”);
 return 0;
}

    原文作者:AVL树
    原文地址: https://blog.csdn.net/xomlee/article/details/17628681
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞