递归(recursion)算法的运行时间常用递归表达式表示。本文主要讲解如何从递归表达式求解出bigO时间复杂度。
例一:
T(n) = T(n-1)+1
解:T(n) = T(n-1)+1 = [T(n-2)+1]+1 = T(n-2)+2 = T(n-3)+3 = … = T(n-n)+n = n
故 O(n) = n
例二:
T(n) = T(n-1)+n-1
解:T(n) = T(n-1)+n-1 = T(n-2)+(n-2)+(n-1) = T(n-3)+(n-3)+(n-2)+(n-1) = …
= T(n-(n-1))+n-(n-1)+…+(n-2)+(n-1) = 0+1+2+3+4+…+(n-1) = n(n-1)/2
故 O(n) = n^2
例三:
T(n) = 2T(n-1)+1
解:T(n) = 2T(n-1)+1 = 2( 2T(n-2)+1)+1 = 4T(n-2)+2+1 = …
= 2^(n-1)T(n-(n-1))+2^(n-2)+…2^2+2+1 = 2^(n-1)+2^(n-2)+…2^2+2+1=2^n-1
故O(n) = 2^n
例四:
T(n) = 2T(n/2)+n-1
解: T(n) = 2T(n/2)+n-1 = T(n) = 2(T(n) = 2T(n/4)+n/2-1)+n-1 = 4T(n/4)+2n-2-1 = 4(2T(n/8)+n/4-1)+2n-2-1
= 8T(n/8)+3n-4-2-1 = 2^k(T(n/(2^k)))+kn-2^(k-1)-…-4-2-1
令n=2^k
代入得:T(n) = (2^k)T(1)+k(2^k)-(2^(k-1)+…+4+2+1) = k(2^k)-((2^k)-1) = n(logn)-n+1
故 O(n)= n(logn)
总结以上四个常用递归关系表达式,其他的万变不离其宗了。