Follow up for “Find Minimum in Rotated Sorted Array”:
What if duplicates are allowed?Would this affect the run-time complexity? How and why?
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., 0 1 2 4 5 6 7
might become 4 5 6 7 0 1 2
).
Find the minimum element.
The array may contain duplicates.
寻找旋转有序重复数组的最小值是对之前问题的延伸(http://www.cnblogs.com/grandyang/p/4032934.html),当数组中存在大量的重复数字时,就会破坏二分查找法的机制,我们无法取得O(lgn)的时间复杂度,又将会回到简单粗暴的O(n),比如如下两种情况:
{2, 2, 2, 2, 2, 2, 2, 2, 0, 1, 1, 2} 和 {2, 2, 2, 0, 2, 2, 2, 2, 2, 2, 2, 2}, 我们发现,当第一个数字和最后一个数字,还有中间那个数字全部相等的时候,二分查找法就崩溃了,因为它无法判断到底该去左半边还是右半边。这种情况下,我们将左指针右移一位,略过一个相同数字,这对结果不会产生影响,因为我们只是去掉了一个相同的,然后对剩余的部分继续用二分查找法,在最坏的情况下,比如数组所有元素都相同,时间复杂度会升到O(n),参见代码如下:
class Solution { public: int findMin(vector<int> &nums) { if (nums.empty()) return 0; int left = 0, right = nums.size() - 1, res = nums[0]; while (left < right - 1) { int mid = left + (right - left) / 2; if (nums[left] < nums[mid]) { res = min(res, nums[left]); left = mid + 1; } else if (nums[left] > nums[mid]) { res = min(res, nums[right]); right = mid; } else ++left; } res = min(res, nums[left]); res = min(res, nums[right]); return res; } };
参考资料:
http://blog.csdn.net/linhuanmars/article/details/40449299