Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could be produced using 1 cut.
这道题是让找到把原字符串拆分成回文串的最小切割数,需要用动态规划Dynamic Programming来做,使用DP的核心是在于找出递推公式,之前有道地牢游戏Dungeon Game的题也是需要用DP来做,而那道题是二维DP来解,这道题由于只是拆分一个字符串,需要一个一维的递推公式,我们还是从后往前推,递推公式为:dp[i] = min(dp[i], 1+dp[j+1] ) i<=j <n,那么还有个问题,是否对于i到j之间的子字符串s[i][j]每次都判断一下是否是回文串,其实这个也可以用DP来简化,其DP递推公式为P[i][j] = s[i] == s[j] && P[i+1][j-1],其中P[i][j] = true if [i,j]为回文。代码如下:
class Solution { public: int minCut(string s) { int len = s.size(); bool P[len][len]; int dp[len + 1]; for (int i = 0; i <= len; ++i) { dp[i] = len - i - 1; } for (int i = 0; i < len; ++i) { for (int j = 0; j < len; ++j) { P[i][j] = false; } } for (int i = len - 1; i >= 0; --i) { for (int j = i; j < len; ++j) { if (s[i] == s[j] && (j - i <= 1 || P[i + 1][j - 1])) { P[i][j] = true; dp[i] = min(dp[i], dp[j + 1] + 1); } } } return dp[0]; } };