Two elements of a binary search tree (BST) are swapped by mistake.
Recover the tree without changing its structure.
Example 1:
Input: [1,3,null,null,2] 1 / 3 \ 2 Output: [3,1,null,null,2] 3 / 1 \ 2
Example 2:
Input: [3,1,4,null,null,2] 3 / \ 1 4 / 2 Output: [2,1,4,null,null,3] 2 / \ 1 4 / 3
Follow up:
- A solution using O(n) space is pretty straight forward.
- Could you devise a constant space solution?
这道题要求我们复原一个二叉搜索树,说是其中有两个的顺序被调换了,题目要求上说O(n)的解法很直观,这种解法需要用到递归,用中序遍历树,并将所有节点存到一个一维向量中,把所有节点值存到另一个一维向量中,然后对存节点值的一维向量排序,在将排好的数组按顺序赋给节点。这种最一般的解法可针对任意个数目的节点错乱的情况,这里先贴上此种解法:
解法一:
// O(n) space complexity class Solution { public: void recoverTree(TreeNode* root) { vector<TreeNode*> list; vector<int> vals; inorder(root, list, vals); sort(vals.begin(), vals.end()); for (int i = 0; i < list.size(); ++i) { list[i]->val = vals[i]; } } void inorder(TreeNode* root, vector<TreeNode*>& list, vector<int>& vals) { if (!root) return; inorder(root->left, list, vals); list.push_back(root); vals.push_back(root->val); inorder(root->right, list, vals); } };
然后我上网搜了许多其他解法,看到另一种是用双指针来代替一维向量的,但是这种方法用到了递归,也不是O(1)空间复杂度的解法,这里需要三个指针,first,second分别表示第一个和第二个错乱位置的节点,pre指向当前节点的中序遍历的前一个节点。这里用传统的中序遍历递归来做,不过再应该输出节点值的地方,换成了判断pre和当前节点值的大小,如果pre的大,若first为空,则将first指向pre指的节点,把second指向当前节点。这样中序遍历完整个树,若first和second都存在,则交换它们的节点值即可。这个算法的空间复杂度仍为O(n),n为树的高度,代码如下:
解法二:
// Still O(n) space complexity class Solution { public: TreeNode *pre = NULL, *first = NULL, *second = NULL; void recoverTree(TreeNode* root) { inorder(root); swap(first->val, second->val); } void inorder(TreeNode* root) { if (!root) return; inorder(root->left); if (!pre) pre = root; else { if (pre->val > root->val) { if (!first) first = pre; second = root; } pre = root; } inorder(root->right); } };
我们其实也可以使用迭代的写法,因为中序遍历 Binary Tree Inorder Traversal 也可以借助栈来实现,原理还是跟前面的相同,记录前一个结点,并和当前结点相比,如果前一个结点值大,那么更新first和second,最后交换first和second的结点值即可,参见代码如下:
解法三:
// Always O(n) space complexity class Solution { public: void recoverTree(TreeNode* root) { TreeNode *pre = NULL, *first = NULL, *second = NULL, *p = root; stack<TreeNode*> st; while (p || !st.empty()) { while (p) { st.push(p); p = p->left; } p = st.top(); st.pop(); if (pre) { if (pre->val > p->val) { if (!first) first = pre; second = p; } } pre = p; p = p->right; } swap(first->val, second->val); } };
这道题的真正符合要求的解法应该用的Morris遍历,这是一种非递归且不使用栈,空间复杂度为O(1)的遍历方法,可参见我之前的博客 Binary Tree Inorder Traversal,在其基础上做些修改,加入first, second和parent指针,来比较当前节点值和中序遍历的前一节点值的大小,跟上面递归算法的思路相似,代码如下:
解法四:
// Now O(1) space complexity class Solution { public: void recoverTree(TreeNode* root) { TreeNode *first = NULL, *second = NULL, *parent = NULL; TreeNode *cur, *pre; cur = root; while (cur) { if (!cur->left) { if (parent && parent->val > cur->val) { if (!first) first = parent; second = cur; } parent = cur; cur = cur->right; } else { pre = cur->left; while (pre->right && pre->right != cur) pre = pre->right; if (!pre->right) { pre->right = cur; cur = cur->left; } else { pre->right = NULL; if (parent->val > cur->val) { if (!first) first = parent; second = cur; } parent = cur; cur = cur->right; } } } swap(first->val, second->val); } };
类似题目:
参考资料:
https://leetcode.com/problems/recover-binary-search-tree/