1. 折半查找
使用折半查找的前提是元素已经排序。
代码实现:先定义接口Search
package org.util.search;
/** * 查找 * @author Weibing Long * @since 2018.04.13 */
public interface Search {
boolean search(int[] x, int key);
}
然后实现方法
package org.util.search;
/** * 折半查找,使用折半查找的前提是元素已经排序 * @author Weibing Long * @since 2018.04.13 */
public class BinarySearch implements Search {
public static void main(String[] args) {
BinarySearch binarySearch = new BinarySearch();
int[] x = new int[] {
2, 3, 5, 7, 10, 11, 18, 19, 23
};
boolean result = binarySearch.search(x, 3);
System.out.println(result);
}
@Override
public boolean search(int[] x, int key) {
if (x == null)
throw new NullPointerException("数组对象不能为空");
if (x.length == 1 && key == x[0])
return true;
int left = 0;
int right = x.length - 1;
int middle = 0;
while (left <= right) {
long sum = right + left;
middle = (int)(sum / 2);
if (key > x[middle])
left = middle + 1;
else if (key < x[middle])
right = middle - 1;
else
return true;
}
return false;
}
}
注意:应该考虑到int溢出的情况。当求数组中间位置时,如果数组长度很大,则(right + left)/ 2中的right + left容易溢出,所以先将和放入long类型的sum中,然后再除2后转换为int类型,因为中间索引一定在int所允许的范围内。
具体代码体现在
long sum = right + left;
middle = (int)(sum / 2);