题目
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
Integers in each row are sorted in ascending from left to right.
Integers in each column are sorted in ascending from top to bottom.
For example,
Consider the following matrix:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
Given target = 5, return true.
Given target = 20, return false.
解题思路
分治法求解,首先根据矩阵的特点,横向和纵向是分别升序的。可以从右上角或者左下角进行判断。拿左下角来说
1. 如果比target大,那么需要往上走,因为当前行的右边都比它大
2. 如果比target小,那么需要往右走,因为当前列的上面比它都小
3. 相等则命中
每次都是通过减少一行或者一列来向前搜索,复杂度就是O(M+N)M,N为矩阵行列数
代码
class Solution {
public:
bool searchMatrix(vector<vector<int>>& matrix, int target) {
int row=matrix.size();
if(row == 0) return false;
int column=matrix[0].size();
int j=0;
int i=row-1;
while(j<column&&i>=0)
{
int temp=matrix[i][j];
if(temp==target)
{
return true;
}
if(temp>target)
{
i--;
}
else
{
j++;
}
}
return false;
}
};