Implement int sqrt(int x)
.
Compute and return the square root of x.
这道题要求我们求平方根,我们能想到的方法就是算一个候选值的平方,然后和x比较大小,为了缩短查找时间,我们采用二分搜索法来找平方根,这里属于博主之前总结的LeetCode Binary Search Summary 二分搜索法小结中的第三类的变形,找最后一个不大于目标值的数,代码如下:
解法一:
class Solution { public: int mySqrt(int x) { if (x <= 1) return x; int left = 0, right = x; while (left < right) { int mid = left + (right - left) / 2; if (x / mid >= mid) left = mid + 1; else right = mid; } return right - 1; } };
这道题还有另一种解法,是利用牛顿迭代法,记得高数中好像讲到过这个方法,是用逼近法求方程根的神器,在这里也可以借用一下,可参见网友Annie Kim’s Blog的博客,因为要求x2 = n的解,令f(x)=x2-n,相当于求解f(x)=0的解,可以求出递推式如下:
xi+1=xi – (xi2 – n) / (2xi) = xi – xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2
解法二:
class Solution { public: int mySqrt(int x) { if (x == 0) return 0; double res = 1, pre = 0; while (abs(res - pre) > 1e-6) { pre = res; res = (res + x / res) / 2; } return int(res); } };
也是牛顿迭代法,写法更加简洁一些,注意为了防止越界,声明为长整型,参见代码如下:
解法三:
class Solution { public: int mySqrt(int x) { long res = x; while (res * res > x) { res = (res + x / res) / 2; } return res; } };
类似题目:
参考资料:
https://leetcode.com/problems/sqrtx/description/
https://leetcode.com/problems/sqrtx/discuss/25130/My-clean-C++-code-8ms
https://leetcode.com/problems/sqrtx/discuss/25047/A-Binary-Search-Solution
https://leetcode.com/problems/sqrtx/discuss/25057/3-4-short-lines-Integer-Newton-Every-Language