哈希表算法讲解

    一般的线性表、树中,记录在结构中的相对位置是随机的即和记录的关键字之间不存在确定的关系,在结构中查找记录时需进行一系列和关键字的比较。这一类查找方法建立在“比较”的基础上,查找的效率与比较次数密切相关。理想的情况是能直接找到需要的记录,因此必须在记录的存储位置和它的关键字之间建立一确定的对应关系f,使每个关键字和结构中一个唯一的存储位置相对应。因而查找时,只需根据这个对应关系f找到给定值K的像f(K)。若结构中存在关键字和K相等的记录,则必定在f(K)的存储位置上,由此不需要进行比较便可直接取得所查记录。在此,称这个对应关系f为哈希函数,按这个思想建立的表为哈希表(又称为杂凑法或散列表)。
  哈希表不可避免冲突(collision)现象:对不同的关键字可能得到同一哈希地址 即key1≠key2,而f(key1)=f(key2)。具有相同函数值的关键字对该哈希函数来说称为同义词(synonym)。 因此,在建造哈希表时不仅要设定一个好的哈希函数,而且要设定一种处理冲突的方法。可如下描述哈希表:根据设定的哈希函数H(key)和所选中的处理冲突的方法,将一组关键字映象到一个有限的、地址连续的地址集(区间)上并以关键字在地址集中的“象”作为相应记录在表中的存储位置,这种表被称为哈希表。
  注:这个函数f(key)为哈希函数。(注意:这个函数并不一定是数学函数) 哈希函数是一个映象,即:将关键字的集合映射到某个地址集合上,它的设置很灵活,只要这个地址集合的大小不超出允许范围即可。 现实中哈希函数是需要构造的,并且构造的好才能使用的好。
  对于动态查找表而言,1) 表长不确定;2)在设计查找表时,只知道关键字所属范围,而不知道确切的关键字。因此,一般情况需建立一个函数关系,以f(key)作为关键字为key的录在表中的位置,通常称这个函数f(key)为哈希函数。(注意:这个函数并不一定是数学函数) 
  哈希函数是一个映象,即:将关键字的集合映射到某个地址集合上,它的设置很灵活,只要这个地址

集合的大小不超出允许范围即可。 
  现实中哈希函数是需要构造的,并且构造的好才能使用的好。 
  用途:加密,解决冲突问题。。。。 
  用途很广,比特精灵中就使用了哈希函数,你可 以自己看看。 
  具体可以学习一下数据结构和算法的书。
  字符串哈希函数(著名的ELFhash算法)
  int ELFhash(char *key)
  { unsigned long h=0;
  while(*key)
  { h=(h<<4)+*key++;
  unsigned long g=h&0Xf0000000L;
  if(g) h^=g>>24;
  h&=~g;
  }
  return h%MOD;
  }

 

 

哈希算法将任意长度的二进制值映射为固定长度的较小二进制值,这个小的二进制值称为哈希值。哈希值是一段数据唯一且极其紧凑的数值表示形式。如果散列一段明文而且哪怕只更改该段落的一个字母,随后的哈希都将产生不同的值。要找到散列为同一个值的两个不同的输入,在计算上是不可能的,所以数据的哈希值可以检验数据的完整性。

哈希表是根据设定的哈希函数H(key)和处理冲突方法将一组关键字映象到一个有限的地址区间上,并以关键字在地址区间中的象作为记录在表中的存储位置,这种表称为哈希表或散列,所得存储位置称为哈希地址或散列地址。作为线性数据结构与表格和队列等相比,哈希表无疑是查找速度比较快的一种。

哈希
通过将单向数学函数(有时称为“哈希算法”)应用到任意数量的数据所得到的固定大小的结果。如果输入数据中有变化,则哈希也会发生变化。哈希可用于许多操作,包括身份验证和数字签名。也称为“消息摘要”。
哈希算法
用来产生一些数据片段(例如消息或会话项)的哈希值的算法。使用好的哈希算法,在输入数据中所做的更改就可以更改结果哈希值中的所有位;因此,哈希对于检测数据对象(例如消息)中的修改很有用。此外,好的哈希算法使得构造两个相互独立且具有相同哈希的输入不能通过计算方法实现。典型的哈希算法包括 MD2、MD4、MD5 和 SHA-1。哈希算法也称为“哈希函数”。
另请参阅: 基于哈希的消息验证模式 (HMAC), MD2, MD4, MD5, 消息摘要, 安全哈希算法 (SHA-1)
MD5一种符合工业标准的单向 128 位哈希方案,由 RSA Data Security, Inc. 开发。 各种“点对点协议(PPP)”供应商都将它用于加密的身份验证。哈希方案是一种以结果唯一并且不能返回到其原始格式的方式来转换数据(如密码)的方法。质询握手身份验证协议 (CHAP) 使用质询响应并在响应时使用单向 MD5哈希法。按照此方式,您无须通过网络发送密码就可以向服务器证明您知道密码。
质询握手身份验证协议 (CHAP)“点对点协议 (PPP)”连接的一种质询响应验证协议,在 RFC 1994 中有所描述。 该协议使用业界标准 MD5 哈希算法来哈希质询串(由身份验证服务器所发布)和响应中的用户密码的组合。

点对点协议 (PPP)
用点对点链接来传送多协议数据报的行业标准协议套件。RFC 1661 中有关于 PPP 的文档。
另请参阅: 压缩控制协议 (CCP), 远程访问, 征求意见文档 (RFC), 传输控制协议/Internet 协议(TCP/IP), 自主隧道


Hash不可逆,但是大多数Hash算法中   Obj1==Obj2   =>   hashObj1==hashObj2    所以,只要计算出某个Obj的Hash与原Hash相同,至少你可知道等效的密码

 

 

SHA1算法原理
1 SHA1算法简介

安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。

SHA1有如下特性:不可以从消息摘要中复原信息;两个不同的消息不会产生同样的消息摘要。

2 术语和概念

2.1位(Bit),字节(Byte)和字(Word)

SHA1始终把消息当成一个位(bit)字符串来处理。本文中,一个“字”(Word)是32位,而一个“字节”(Byte)是8位。比如,字符串“abc”可以被转换成一个位字符串:01100001 01100010 01100011。它也可以被表示成16进制字符串: 0x616263.

2.2 运算符和符号

下面的逻辑运算符都被运用于“字”(Word)

X^Y    = X, Y逻辑与

X // Y   = X, Y逻辑或

X XOR Y= X, Y逻辑异或

~X     =   X逻辑取反

X+Y定义如下:

字 X 和 Y 代表两个整数 x 和y, 其中 0 <= x < 2^32 且 0 <= y < 2^32. 令整数z = (x + y) mod 2^32. 这时候 0 <= z < 2^32. 将z转换成字Z, 那么就是 Z = X + Y.

循环左移位操作符Sn(X)。X是一个字,n是一个整数,0<=n<=32。Sn(X) = (X<<n)OR(X>>32-n)X<<n定义如下:抛弃最左边的n位数字,将各个位依次向左移动n位,然后用0填补右边的n位(最后结果还是32位)。X>>n是抛弃右边的n位,将各个位依次向右移动n位,然后在左边的n位填0。因此可以叫Sn(X)

位循环移位运算

3 SHA1算法描述

在SHA1算法中,我们必须把原始消息(字符串,文件等)转换成位字符串。SHA1算法只接受位作为输入。

假设我们对字符串“abc”产生消息摘要。首先,我们将它转换成位字符串如下:

01100001 01100010 01100011

―――――――――――――

‘a’=97   ‘b’=98   ‘c’=99

这个位字符串的长度为24。下面我们需要5个步骤来计算MD5。

3.1 补位

       消息必须进行补位,以使其长度在对512取模以后的余数是448。也就是说,(补位后的消息长度)%512 = 448。即使长度已经满足对512取模后余数是448,补位也必须要进行。

       补位是这样进行的:先补一个1,然后再补0,直到长度满足对512取模后余数是448。总而言之,

补位是至少补一位,最多补512位。还是以前面的“abc”为例显示补位的过程。

原始信息: 01100001 01100010 01100011

补位第一步:01100001 01100010 01100011 1

                                                                首先补一个“1”

补位第二步:01100001 01100010 01100011 10…..0

                                                                然后补423个“0”

我们可以把最后补位完成后的数据用16进制写成下面的样子

61626380 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000

现在,数据的长度是448了,我们可以进行下一步操作。

3.2 补长度

       所谓的补长度是将原始数据的长度补到已经进行了补位操作的消息后面。通常用一个64位的数据来表示原始消息的长度。如果消息长度不大于2^64,那么第一个字就是0。在进行了补长度的操作以后,整个消息就变成下面这样了(16进制格式)

61626380 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000018

如果原始的消息长度超过了512,我们需要将它补成512的倍数。然后我们把整个消息分成一个一个512位的数据块,分别处理每一个数据块,从而得到消息摘要。

3.3 使用的常量

一系列的常量字K(0), K(1), … , K(79),如果以16进制给出。它们如下:

Kt = 0x5A827999   (0 <= t <= 19)

Kt = 0x6ED9EBA1 (20 <= t <= 39)

Kt = 0x8F1BBCDC (40 <= t <= 59)

Kt = 0xCA62C1D6 (60 <= t <= 79).

3.4 需要使用的函数

在SHA1中我们需要一系列的函数。每个函数ft (0 <= t <= 79)都操作32位字B,C,D并且产生32位字作为

输出。ft(B,C,D)可以如下定义

ft(B,C,D) = (B AND C) or ((NOT B) AND D) ( 0 <= t <= 19)

ft(B,C,D) = B XOR C XOR D              (20 <= t <= 39)

ft(B,C,D) = (B AND C) or (B AND D) or (C AND D) (40 <= t <= 59)

ft(B,C,D) = B XOR C XOR D                     (60 <= t <= 79).

3.5 计算消息摘要

必须使用进行了补位和补长度后的消息来计算消息摘要。计算需要两个缓冲区,每个都由5个32位的字组成,还需要一个80个32位字的缓冲区。第一个5个字的缓冲区被标识为A,B,C,D,E。第一个5个字的缓冲区被标识为H0, H1, H2, H3, H4。80个字的缓冲区被标识为W0, W1,…, W79


另外还需要一个一个字的TEMP缓冲区。

为了产生消息摘要,在第4部分中定义的16个字的数据块M1, M2,…, Mn 会依次进行处理,处理每个数据块Mi 包含80个步骤。

在处理每个数据块之前,缓冲区{Hi} 被初始化为下面的值(16进制)

H0 = 0x67452301

H1 = 0xEFCDAB89

H2 = 0x98BADCFE

H3 = 0x10325476

H4 = 0xC3D2E1F0. 
现在开始处理M1, M2, … , Mn。为了处理 Mi,需要进行下面的步骤

(1). 将 Mi 分成 16 个字 W0, W1, … , W15,   W0 是最左边的字

(2). 对于 t = 16 到 79 令 Wt = S1(Wt-3 XOR Wt-8 XOR Wt- 14 XOR Wt-16).

(3). 令 A = H0, B = H1, C = H2, D = H3, E = H4.

(4) 对于 t = 0 到 79,执行下面的循环

TEMP = S5(A) + ft(B,C,D) + E + Wt + Kt;

E = D; D = C; C = S30(B); B = A; A = TEMP;

(5). 令 H0 = H0 + A, H1 = H1 + B, H2 = H2 + C, H3 = H3 + D, H4 = H4 + E. 
在处理完所有的 Mn, 后,消息摘要是一个160位的字符串,以下面的顺序标识

H0 H1 H2 H3 H4.

对于SHA256,SHA384,SHA512。你也可以用相似的办法来计算消息摘要。对消息进行补位的算法完全是一样的。

    原文作者:哈希算法
    原文地址: https://blog.csdn.net/andyhuabing/article/details/7166460
    本文转自网络文章,转载此文章仅为分享知识,如有侵权,请联系博主进行删除。
点赞