思路
第一问看上去像是个树形结构,但是其实我们可以把它直接看成是一个区间DP。令 fi,j 存储区间 [i,j] 内的最大加分,那么三重循环分别枚举左端点、右端点和中间元素,无脑循环出来的 f1,n 即为 [1,n] 区间内的最大加分。在计算过程中,每次记录一下每个节点的位置,方便第二问输出。
代码
#include <cctype>
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <queue>
#include <utility>
int nextInt()
{
int num = 0;
char c;
bool flag = false;
while ((c = std::getchar()) == ' ' || c == '\r' || c == '\t' || c == '\n');
if (c == '-')
flag = true;
else
num = c - 48;
while (std::isdigit(c = std::getchar()))
num = num * 10 + c - 48;
return (flag ? -1 : 1) * num;
}
typedef long long LL;
LL n, f[31][31] = { 0 }, i, j, k, x, a[31] = { 0 }, node[31][31] = { 0 };
void LTR(const int l, const int r)
{
if (l > r)
return;
std::cout << node[l][r] << ' ';
LTR(l, node[l][r] - 1);
LTR(node[l][r] + 1, r);
}
int main(int argc, char **argv)
{
int n = nextInt();
for (int i = 0; i <= n; i++)
for (int j = 0; j <= n; j++)
f[i][j] = 1;
for (int i = 1; i <= n; i++)
{
a[i] = nextInt();
f[i][i] = a[i];
node[i][i] = i;
}
for (int i = n - 1; i >= 1; i--)
for (int j = i + 1; j <= n; j++)
for (int k = i; k <= j; k++)
if (f[i][k - 1] * f[k + 1][j] + a[k] > f[i][j])
{
node[i][j] = k;
f[i][j] = f[i][k - 1] * f[k + 1][j] + a[k];
}
std::cout << f[1][n] << std::endl;
LTR(1, n);
#ifdef __EDWARD_EDIT
std::cin.get();
std::cin.get();
#endif
return 0;
}