若干排序算法的Python实现方法及原理

今天突然想到了一个问题:让你立即把堆排、快排等等排序算法写出来会不会,并且不能犯逻辑错误?

我说:不会,至少需要思考一下,并且可能还需要时间调试。

之前总是觉得,不就是排序算法吗?有什么大不了的?网上、书上一查一大堆。但是换个角度想:1+1 = ? 你会不会?

排序算法应是作为最基本的工具一样,是信手捏来的,所以我把《算法导论》上的几个排序问题看了并且实现了一遍;在此做分享:

冒泡排序

冒泡排序应该算是比较简单并且使用广泛的排序算法之一了吧,但是它的效率并不怎么高,我们可以先看一下实现:

def bubbleSort(A):
	length = len(A);
	for i in range(0, length):
		for j in range(length - 1, i, -1):
			if A[j] < A[j - 1]:
				(A[j], A[j - 1]) = (A[j - 1], A[j]);
	return A;


a = [5, 0, 1, 3, 6, 2, 4, 9, 12, 11, 18, 20, 7, 8, 19, 13, 14, 17, 16, 10];
a = bubbleSort(a);
print(a);

顾名思义,冒泡排序就
像泡沫一样一层一层往上冒,需要一个一个比较;

比较次数(n-1)*n / 2, 数据交换次数最坏情况3*(n-1)*n/2,最好情况0,所以其时间复杂度O(n^2);

插入排序

def insertionSort(A):
	for i in range(1, len(A)):
		key = A[i];
		j = i - 1;
		while (j >= 0) and (A[j] > key):
			A[j + 1] = A[j];
			j = j - 1;
		A[j+1] = key;
	return A;


a = [5, 0, 1, 3, 6, 2, 4, 9, 12, 11, 18, 20, 7, 8, 19, 13, 14, 17, 16, 10];
a = insertionSort(a);
print(a);

要理解插入排序,可以想象打扑克的时候是怎么拿牌的,我们摸一张牌,然后
从左往右(或从右往左)按顺序比较,再把牌插入相应位置,插入排序就是这种思想。

时间复杂度O(n^2)

归并排序

记得大二学习《数据结构》第一次写这个算法的时候想了好久,因为使用递归的思想,有些地方总是转不过弯来。

def merge(A):
	length = len(A);
	if length <= 1 : return A;
	n1 = length / 2;
	n2 = length - n1;
	L = [];
	R = [];
	for i in range(0, n1):
		L.append(A[i]);
	for i in range(0, n2):
		R.append(A[n1 + i]);
	if n1 > 1 : merge(L);
	if n2 > 1 : merge(R);
	i = 0;
	j = 0;
	for k in range(0, length):
		if L[i] < R[j]:
			A[k] = L[i];
			i = i + 1;
			if i >= n1:
				for i in range(j, n2):
					k = k + 1;
					A[k] = R[i];
				break;
		else: 
			A[k] = R[j]
			j = j + 1;
			if j >= n2:
				for j in range(i, n1):
					k = k + 1;
					A[k] = L[j];
				break;
	return A;

	
a = [5, 0, 1, 3, 6, 2, 4, 9, 12, 11, 18, 20, 7, 8, 19, 13, 14, 17, 16, 10];
a = merge(a);
print(a);

如果你能很好的理解递归的思想的话,想必归并排序也是很简单的。其核心思想在于怎么把问题分解成一系列类型一样的小问题。我们可以这样想:

两个排好序的数列怎么合并成一个序列?

两个序列的数据一个一个比较,将小的存入新的队列,直至这两个数列一个为空,则将另外一个数列剩余数据插入队列。如果你把这两个数列想象成扑克的话或许更好理解。如果这两个序列都只有一个数据的话,是不是会很简单的就排完了?

[1, 3, 5], [2, 4, 6, 7]  ======> [1, 2, 3, 4, 5, 6, 7]

归并排序通过递归方法,最终将一个待排序序列换成若干组待排序的包含一个数据的数列。

时间复杂度O(nlog(n))

堆排序

曾经,第一次写堆排,用C链表,自信满满地构建了一颗二叉树!原来堆排序不需要构建一颗视觉上的二叉树!!!运用原址排序(只操作下标和对应的元素)解决!!!

parent = lambda i : (i -  1) / 2;
left = lambda i : 2 * i + 1;
right = lambda i : 2 * i + 2;
exchange = lambda a, b : (b, a);

def maxHeapfy(A, i, length):
	l = left(i);
	r = right(i);
	if l < length and A[l] > A[i]:
		large = l;
	else:
		large = i;
	if r < length and A[r] > A[large]:
		large = r;
	if large != i:
		(A[i], A[large]) = exchange(A[i], A[large]);
		maxHeapfy(A, large, length);
	return A;

def buildHeap(A, length):
	for i in range(length / 2 - 1, -1, -1):
		maxHeapfy(A, i, length);

def heapSort(A):
	length = len(A);
	buildHeap(A, length);
	for i in range(len(A) - 1, 0, -1):
		(A[0], A[i]) = exchange(A[0], A[i]);
		length = length - 1;
		maxHeapfy(A, 0, length);
	return A;
	

a = [5, 0, 1, 3, 6, 2, 4, 9, 12, 11, 18, 20, 7, 8, 19, 13, 14, 17, 16, 10];
a = heapSort(a);
print(a);

堆排的思想在于理解最大(小)堆的概念:对于一个二叉树,父节点总是不小(大)于子节点的,即

A[parent(i)] >= A[i] ……①

后面便于称述不过于冗余,只讨论最大堆。

所以堆排的第一目的是建立一个满足条件的最大堆,要建立最大堆,就需要有最大堆的判定条件,即①式。建立最大堆之后,将根节点找到、保存并剔除、对剩下的序列继续做最大堆,重复上述过程即可完成排序。

时间复杂度O(nlog(n))

快速排序

注意也是原址排序!!!

def partition(A, p, r):
	x = A[r];
	i = p - 1;
	for j in range(p, r):
		if A[j] <= x:
			i = i + 1;
			(A[i], A[j]) = (A[j], A[i]);
	(A[i + 1], A[r]) = (A[r], A[i + 1]);
	return i + 1;

def quickSort(A, p, r):
	if p < r:
		q = partition(A, p, r);
		quickSort(A, p, q - 1);
		quickSort(A, q + 1, r);
	return A;


a = [5, 0, 1, 3, 6, 2, 4, 9, 12, 11, 18, 20, 7, 8, 19, 13, 14, 17, 16, 10];
a = quickSort(a, 0, len(a) - 1);
print(a);

快排的思想在于将序列分成三部分A[0,i-1],A[i],A[i+1,n],并且满足条件A[0, i-1]中所有元素小于等于A[i],A[i+1,n]中所有元素大于等于A[i]。同样可以使用递归的方法实现。不理解的可以参考归并排序。

时间复杂度O(nlog(n))

点赞