整数点与Pick定理

 

Pick 定理   设以整数点为顶点的多边形的面积为S,多边形内部的整数点数为N,多边形边界上的整数点数为L,则

                N+1/2L-1=S.

      对于N与L的计算由下面的程序给出:

typedef struct Point

{

      int x,y;

}POINT;

int gcd(int a,int b)                         //求数a,b的最大公因数

{

     if(b==0) return a;

     else return gcd(b,a%b);

}

多边形边上的网格点个数有下列程序段给出:

int OnEdge(int n,POINT *p)

{

     int i,ret=0;

     for(i=0;i<n;i++)

          ret+=gcd(fabs(p[i].x-p[(i+1)%n].x),fabs(p[i].y-p[(i+1)%n].y));

     return ret;

}

多边形内部的网格点个数由下列程序段给出:

int InSide(int n,POINT *p)

{

    int i,area=0;

    for(i=0;i<n;i++) area+=p[(i+1)%n].y*(p[i].x-p[(i+2)%n].x);           //计算面积

    return (fabs(area)-OnEdge(n,p))/2 +1;

}

 

问题描述

      格点是一个有序(x,y),其中x和y都是整数。给定三角形的顶点座标(碰巧是格点),要你计算完全在三角形中的顶点个数(三角形边上和三角形的顶点不必计算)。

输入    

     输入有多组测试数据。每组测试数据由6个整数x1,y1,x2,y2,x3和y3组成,其中,(x1,y1)、(x2,y2)和(x3,y3)是三角形的顶点座标。输入中的所有三角形都是非退化的(有正的面积),-15000≤x1,y1,x2,y2,x3,y3≤15000。当输入的数满足x1=y1=x2=y2=x3=y3=0时表示输入结束,不必处理。

输出

     对每组测试数据,单行上输出三角形内部格点的个数。

输入样例                                                  输出样例

0 0 1 0 0 1                                              0

0 0 5 0 0 5                                              6

0 0 0 0 0 0    

 

分析

     本题可直接用Pick定理:area=OnEdge/2+InSide-1,其中area为顶点都是格点的多边形的面积,OnEdge为多边形上的格点数,InSide为多边形内部的格点数。

     多边形的面积可用叉积计算,但注意可能为负值,需转换。给定两个格点A(x0,y0),B(x1,y1)。设C(X,Y)是线段AB上的一个结点。那么,x=x0+λ(x1-x0),y=y0+λ(y1-y0),(0≤λ≤1)。要使x与y均为整数,λ必为一个分数,而且λ的分母是x1-x0与y1-y0的公因数,因此可用最大公因数算法gcd求得。

 

参考程序

http://www.cnblogs.com/zzw818/

 

点赞