遗传算法的优缺点
遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异.
。数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现”死循环”现象,使迭代无法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。
生物在漫长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法(GA)。算法中称遗传的生物体为个体(individual),个体对环境的适应程度用适应值(fitness)表示。适应值取决于个体的染色体(chromosome),在算法中染色体常用一串数字表示,数字串中的一位对应一个基因(gene)。一定数量的个体组成一个群体(population)。对所有个体进行选择、交叉和变异等操作,生成新的群体,称为新一代(new generation)。
遗传算法计算程序的流程可以表示如下[3]:
第一步 准备工作
(1)选择合适的编码方案,将变量(特征)转换为染色体(数字串,串长为m)。通常用二进制编码。
(2)选择合适的参数,包括群体大小(个体数M)、交叉概率PC和变异概率Pm。
(3)确定适应值函数f(x)。f(x)应为正值。
第二步 形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取已分析的可能滑裂面组作为初始群体。
第三步 对每一染色体(串)计算其适应值fi,同时计算群体的总适应值 。
第四步 选择
计算每一串的选择概率Pi=fi/F及累计概率。选择一般通过模拟旋转滚花轮(roulette,其上按Pi大小分成大小不等的扇形区)的算法进行。旋转M次即可选出M个串来。在计算机上实现的步骤是:产生[0,1]间随机数r,若r<q1,则第一串v1入选,否则选v2,使满足qi-1<r<qi(2≤i≤m)。可见适应值大的入选概率大。
第五步 交叉
(1)对每串产生[0,1]间随机数,若r>pc,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。
(2) 对每一对,产生[1,m]间的随机数以确定交叉的位置。
第六步 变异
如变异概率为Pm,则可能变异的位数的期望值为Pm ×m×M,每一位以等概率变异。具体为对每一串中的每一位产生[0,1]间的随机数r,若r<Pm,则该位发生反转,如对染色体二进制编码为数字0变为1,1变为0。
如新个体数达到M个,则已形成一个新群体,转向第三步;否则转向第四步继续遗传操作。直到找到使适应值最大的个体或达到最大进化代数为止。
由于选择概率是由适应值决定的,即适应值大的染色体入选概率也较大,使选择起到”择优汰劣”的作用。交叉使染色体交换信息,结合选择规则,使优秀信息得以保存,不良信息被遗弃。变异是基因中得某一位发生突变,以达到产生确实有实质性差异的新品种。遗传算法虽是一种随机算法,但它是有导向的,它所使用的”按概率随机选择”方法是在有方向的搜索方法中的一种工具。正是这种独特的搜索方法,使遗传算法自然地避开了其它最优化算法常遇到的局部最小陷阱。
遗传算法与传统的优化方法(枚举,启发式等)相比较,以生物进化为原型,具有很好的收敛性,在计算精度要求时,计算时间少,鲁棒性高等都是它的优点。
遗传算法的优点:
1. 与问题领域无关切快速随机的搜索能力。
2. 搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较,robust.
3. 搜索使用评价函数启发,过程简单
4. 使用概率机制进行迭代,具有随机性。
5. 具有可扩展性,容易与其他算法结合。
遗传算法的缺点:
1、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,
2、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.
3、没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要较精确的解需要较多的训练时间。
4、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改进。
5、算法的并行机制的潜在能力没有得到充分的利用,这也是当前遗传算法的一个研究热点方向。
在现在的工作中,遗传算法(1972年提出)已经不能很好的解决大规模计算量问题,它很容易陷入“早熟”。常用混合遗传算法,合作型协同进化算法等来替代,这些算法都是GA的衍生算法。
遗传算法具有良好的全局搜索能力,可以快速地将解空间中的全体解搜索出,而不会陷入局部最优解的快速下降陷阱;并且利用它的内在并行性,可以方便地进行分布式计算,加快求解速度。但是遗传算法的局部搜索能力较差,导致单纯的遗传算法比较费时,在进化后期搜索效率较低。在实际应用中,遗传算法容易产生早熟收敛的问题。采用何种选择方法既要使优良个体得以保留,又要维持群体的多样性,一直是遗传算法中较难解决的问题。
模拟退火算法虽具有摆脱局部最优解的能力,能够以随机搜索技术从概率的意义上找出目标函数的全局最小点。但是,由于模拟退火算法对整个搜索空间的状况了解不多,不便于使搜索过程进入最有希望的搜索区域,使得模拟退火算法的运算效率不高。模拟退火算法对参数(如初始温度)的依赖性较强,且进化速度慢。