遗传算法系列 (3) 交叉算法
基因交叉,或者基因重组,就是把两个父体部分结构加以替换,生成新的个体的操作,习惯上对实数编码的操作叫做重组(Recombination),对二进制编码的操作称为交叉(crossover)。
比较常用的一些算法介绍如下:
1.
重组算法
(Recombination)
实值重组产生子个体一般是用下边这个算法:
子个体=父个体1 + a × ( 父个体2 – 父个体1 )
这里a是一个比例因子,可以由[ -d, 1+d] 上边服从均匀分布的随机数产生。
不同的重组算法,a的取值是不同的,一般来讲,d=0.25是一个比较好的选择。
下边一段c++代码片断,实现一个中值重组算法,其中d取值为0。
1
/*
2
Gene Crossover Algorithm
3
Linear Recombination Xover Algorithm
4
5
A crossover operator that linearly combines two parent
6
chromosome vectors to produce two new offspring a
7
ccording to the following equations:
8
9
Offspring1 = a * Parent1 + (1- a) * Parent2
10
Offspring2 = (1 – a) * Parent1 + a * Parent2
11
12
13
where a is a random weighting factor (chosen before each
14
crossover operation).
15
16
Consider the following 2 parents (each consisting of 4
17
float genes) which have been selected for crossover:
18
19
Parent 1: (0.3)(1.4)(0.2)(7.4)
20
Parent 2: (0.5)(4.5)(0.1)(5.6)
21
22
If a = 0.7, the following two offspring would be produced:
23
24
Offspring1: (0.36)(2.33)(0.17)(6.86)
25
Offspring2: (0.402)(2.981)(0.149)(6.842)
26
*/
27
template
<
class
GENE
>
28
class
Intermediate_Recombination_Gene_Crossover_Algorithm
29
{
30
public
:
31
void
operator
()( GENE
&
g1, GENE
&
g2 )
const
32
{
33
assert( g1.Upper
==
g2.Upper );
34
assert( g1.Lower
==
g2.Lower );
35
36
const
long
double
Ran
=
ran();
37
const
long
double
sum
=
g1.Value
+
g2.Value;
38
39
if
( sum
<
g1.Upper )
40
{
41
g1.Value
=
Ran
*
sum;
42
g2.Value
=
sum
–
g1.Value;
43
}
44
else
45
{
46
const
long
double
sub
=
2
.
0L
*
g1.Upper
–
sum;
47
g1.Value
=
g1.Upper
–
sub
*
Ran;
48
g2.Value
=
g1.Upper
–
sub
+
sub
*
Ran;
49
}
50
}
51
};
2. 交叉算法
如上文遗传算法中的数据结构中所讲,基因的二进制编码有直接编码(Normal)和Gray编码之分,以下所说算法,均适用于这两种算法。
假设基因的二进制编码长度为N,那么这些编码之间有N-1个空隙,可供交叉使用。
二进制交叉算法就是
如何选择空隙,选择多少个空隙。
以下将各走极端的选择一个空隙交叉的单点交叉算法,和选择N-1个空隙进行交叉的洗牌交叉算法大致说一下。
(1) 单点交叉
在二进制编码中,随机选择一个点,以这个点为界限,相互交换变量。
如
父个体1 011111110000000000
父个体2 000000001111111111
如粗体前边位置为所选择的交叉点,那么生成的子个体为:
子个体1 011111111111111111
子个体2 000000000000000000
以下为c++实现,采用Gray编码,直接编码的类似。
1
/*
2
Gene crossover algorithm
3
One Point Crossover using Gray binary encoding
4
5
A crossover operator that randomly selects a crossover point
6
within a chromosome then interchanges the two parent chromosomes
7
at this point to produce two new offspring.
8
9
Consider the following 2 parents which have been selected for
10
crossover. The “|” symbol indicates the randomly chosen
11
crossover point.
12
13
Parent 1: 11001|010
14
Parent 2: 00100|111
15
16
After interchanging the parent chromosomes at the crossover
17
point, the following offspring are produced:
18
19
Offspring1: 11001|111
20
Offspring2: 00100|010
21
*/
22 template<
class GENE >
23
class Gray_Binary_Single_Point_Xover_Gene_Crossover_Algorithm
24 {
25
public:
26
void
operator()( GENE& g1, GENE& g2 )
const
27 {
28 encoding( g1 );
29 encoding( g2 );
30 assert( g1.Binary_Array.size() == g2.Binary_Array.size() );
31
32 normal2gray( g1 );
33 normal2gray( g2 );
34
35
const unsigned
int Pos = static_cast<unsigned
int>
36 ( g1.Binary_Array.size() * ran() );
37
38
for ( unsigned
int i = 0; i < Pos; ++i )
39 {
40
if ( g1.Binary_Array[i] xor g2.Binary_Array[i] )
41 {
42
if ( g1.Binary_Array[i] )
43 {
44 g1.Binary_Array[i] = 0;
45 g2.Binary_Array[i] = 1;
46 }
47
else
48 {
49 g1.Binary_Array[i] = 1;
50 g2.Binary_Array[i] = 0;
51 }
52 }
53 }
54
55 gray2normal( g1 );
56 gray2normal( g1 );
57 decoding( g1 );
58 decoding( g2 );
59 }
60 };
61
62
63
(2)洗牌交叉
洗牌交叉就是,将一个父基因取一半,再上来自另外一个父基因的一半,构成一个新的子基因。
算法代码如下:
1 template<
class GENE >
2
class Gray_Binary_Shuffle_Xover_Gene_Crossover_Algorithm
3 {
4
public:
5
void
operator()( GENE& g1, GENE& g2 )
const
6 {
7 encoding( g1 );
8 encoding( g2 );
9 assert( g1.Binary_Array.size() == g2.Binary_Array.size() );
10
11 normal2gray( g1 );
12 normal2gray( g2 );
13
14
const unsigned
int Size = g1.Binary_Array.size();
15
16
for ( unsigned
int i = 0; i < Size; ++i )
17 {
18
if ( ( i & 1) &&
19 ( g1.Binary_Array[i] xor g2.Binary_Array[i] )
20 )
21 {
22
if ( g1.Binary_Array[i] )
23 {
24 g1.Binary_Array[i] = 0;
25 g2.Binary_Array[i] = 1;
26 }
27
else
28 {
29 g1.Binary_Array[i] = 1;
30 g2.Binary_Array[i] = 0;
31 }
32 }
33 }
34
35 gray2normal( g1 );
36 gray2normal( g1 );
37 decoding( g1 );
38 decoding( g2 );
39 }
40 };
41
42
3.
另外的一些代码
(1)群体中的交叉算法
将经过选择考验的个体放入一个群体,当放入的个体数量达到要求后,对里边的个体进行两两交叉。
1
//
Population Crossover Algorithm
2
//
1. get the number of Chromosomes in the Population
3
//
2. get the number of Gens in a Chromosome
4
//
3. generate a random number
5
//
4. if the random number is bigger than the probability, skip
6
//
5. if the selected two genes are of the same value, skip
7
//
6. crossover the two genes using the selected Gene crossover algorithm
8
template<
class POPULATION,
class GENE_CROSSOVER_ALGORITHM >
9
class Population_Crossover_Algorithm
10 {
11
public:
12
void
operator()( POPULATION& population )
const
13 {
14
//
1
15
const unsigned
int C_Size = population.Chromosome_Array.size();
16 assert( C_Size > 1 );
17
18
//
2
19
const unsigned
int G_Size = population.Chromosome_Array[0].Gene_Array.size();
20
21
for ( unsigned
int i = 0; i < C_Size / 2; ++i )
22 {
23
for( unsigned
int j = 0; j < G_Size; ++j )
24 {
25
//
3
26
const
long
double Ran = ran();
27
//
4
28
if ( Ran > population.Crossover_Probability )
29
continue ;
30
//
5
31
if ( population.Chromosome_Array[i].Gene_Array[j].Value ==
32 population.Chromosome_Array[C_Size-i-1].Gene_Array[j].Value
33 )
34
continue;
35
//
6
36
crossover(
37 population.Chromosome_Array[i].Gene_Array[j],
38 population.Chromosome_Array[C_Size-i-1].Gene_Array[j],
39 GENE_CROSSOVER_ALGORITHM()
40 );
41 }
42 }
43 }
44 };
(2) 交叉函数定义
种群的交叉只涉及一个交叉主体,而基因/个体的交叉涉及两个交叉主体,定义如下:
1
//
Population crossover only
2
template
<
class
POPULATION,
class
ALGORITHM
>
3
void
crossover( POPULATION
&
p,
//
the Population to perform crossover
4
const
ALGORITHM
&
a )
//
the Algorithm used for the crossover
5
{
6
assert( p.Chromosome_Array.size()
>
1
);
7
a( p );
8
}
9
10
11
//
gene crossover algorithm
12
template
<
class
GENE,
class
ALGORITHM
>
13
static
void
crossover( GENE
&
g1,
//
Gene1 to perform crossvoer
14
GENE
&
g2,
//
Gene2 to perform crossvoer
15
const
ALGORITHM
&
a )
//
the Algorithm employed
16
{
17
a( g1, g2 );
18
}
19