計算機科學家常用的32個算法(緒論)

僅就單篇文章來看,本文並不能算是原創,這只是一個起點,後面陸續會將文章中提到的算法,一一展示給大家,這纔是原創;歡迎大家來噴哈

奧地利符號計算研究所(Research Institute for Symbolic Computation,簡稱RISC)的Christoph Koutschan博士在自己的頁面上發佈了一篇文章,提到他做了一個調查,參與者大多數是計算機科學家,他請這些科學家投票選出最重要的
算法,以下是這次調查的結果,按照英文名稱字母順序排序。

1、A* 搜索算法——圖形搜索算法,從給定起點到給定終點計算出路徑。其中使用了一種啓發式的估算,爲每個節點估算通過該節點的較佳路徑,並以之爲各個地點排定次序。算法以得到的次序訪問這些節點。因此,A*搜索算法是較佳優先搜索的範例。

2、集束搜索(又名定向搜索,Beam Search)——較佳優先搜索算法的優化。使用啓發式函數評估它檢查的每個節點的能力。不過,集束搜索只能在每個深度中發現最前面的m個最符合條件的節點,m是固定數字——集束的寬度。

3、二分查找(Binary Search)——在線性數組中找特定值的算法,每個步驟去掉一半不符合要求的數據。

4、分支界定算法(Branch and Bound)——在多種最優化問題中尋找特定最優化解決方案的算法,特別是針對離散、組合的最優化。

5、Buchberger算法——一種數學算法,可將其視爲針對單變量較大公約數求解的歐幾里得算法和線性系統中高斯消元法的泛化。

6、數據壓縮——採取特定編碼方案,使用更少的字節數(或是其他信息承載單元)對信息編碼的過程,又叫來源編碼。

7、Diffie-Hellman密鑰交換算法——一種加密協議,允許雙方在事先不瞭解對方的情況下,在不安全的通信信道中,共同建立共享密鑰。該密鑰以後可與一個對稱密碼一起,加密後續通訊。

8、Dijkstra算法——針對沒有負值權重邊的有向圖,計算其中的單一起點最短算法。

9、離散微分算法(Discrete differentiation)。

10、動態規劃算法(Dynamic Programming)——展示互相覆蓋的子問題和最優子架構算法

11、歐幾里得算法(Euclidean algorithm)——計算兩個整數的較大公約數。最古老的算法之一,出現在公元前300前歐幾里得的《幾何原本》。

12、期望-較大算法(Expectation-maximization algorithm,又名EM-Training)——在統計計算中,期望-較大算法在概率模型中尋找可能性較大的參數估算值,其中模型依賴於未發現的潛在變量。EM在兩個步驟中交替計算,第一步是計算期望,利用對隱藏變量的現有估計值,計算其較大可能估計值;第二步是較大化,較大化在第一步上求得的較大可能值來計算參數的值。

13、快速傅里葉變換(Fast Fourier transform,FFT)——計算離散的傅里葉變換(DFT)及其反轉。該算法應用範圍很廣,從數字信號處理到解決偏微分方程,到快速計算大整數乘積。

14、梯度下降(Gradient descent)——一種數學上的最優化算法。

15、哈希算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整數的乘法的系統中使用,比如計算機代數系統和大數程序庫,如果使用長乘法,速度太慢。該算法發現於1962年。

18、LLL算法(Lenstra-Lenstra-Lovasz lattice reduction)——以格規約(lattice)基數爲輸入,輸出短正交向量基數。LLL算法在以下公共密鑰加密方法中有大量使用:揹包加密系統(knapsack)、有特定設置的RSA加密等等。

19、較大流量算法(Maximum flow)——該算法試圖從一個流量網絡中找到較大的流。它優勢被定義爲找到這樣一個流的值。較大流問題可以看作更復雜的網絡流問題的特定情況。較大流與網絡中的界面有關,這就是較大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一個流網絡中的較大流。

20、合併排序(Merge Sort)。

21、牛頓法(Newton’s method)——求非線性方程(組)零點的一種重要的迭代法。

22、Q-learning學習算法——這是一種通過學習動作值函數(action-value function)完成的強化學習算法,函數採取在給定狀態的給定動作,並計算出期望的效用價值,在此後遵循固定的策略。Q-leanring的優勢是,在不需要環境模型的情況下,可以對比可採納行動的期望效用。

23、兩次篩法(Quadratic Sieve)——現代整數因子分解算法,在實踐中,是目前已知第二快的此類算法(僅次於數域篩法Number Field Sieve)。對於110位以下的十位整數,它仍是最快的,而且都認爲它比數域篩法更簡單。

24、RANSAC——是“RANdom SAmple Consensus”的縮寫。該算法根據一系列觀察得到的數據,數據中包含異常值,估算一個數學模型的參數值。其基本假設是:數據包含非異化值,也就是能夠通過某些模型參數解釋的值,異化值就是那些不符合模型的數據點。

25、RSA——公鑰加密算法。較早的適用於以簽名作爲加密的算法。RSA在電商行業中仍大規模使用,大家也相信它有足夠安全長度的公鑰。

26、Schönhage-Strassen算法——在數學中,Schönhage-Strassen算法是用來完成大整數的乘法的快速漸近算法。其算法複雜度爲:O(N log(N) log(log(N))),該算法使用了傅里葉變換。

27、單純型算法(Simplex Algorithm)——在數學的優化理論中,單純型算法是常用的技術,用來找到線性規劃問題的數值解。線性規劃問題包括在一組實變量上的一系列線性不等式組,以及一個等待較大化(或最小化)的固定線性函數。

28、奇異值分解(Singular value decomposition,簡稱SVD)——在線性代數中,SVD是重要的實數或複數矩陣的分解方法,在信號處理和統計中有多種應用,比如計算矩陣的僞逆矩陣(以求解最小二乘法問題)、解決超定線性系統(overdetermined linear systems)、矩陣逼近、數值天氣預報等等。

29、求解線性方程組(Solving a system of linear equations)——線性方程組是數學中最古老的問題,它們有很多應用,比如在數字信號處理、線性規劃中的估算和預測、數值分析中的非線性問題逼近等等。求解線性方程組,可以使用高斯—約當消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor算法——應用於模式識別領域,爲所有像素找出一種計算方法,看看該像素是否處於同質區域( homogenous region),看看它是否屬於邊緣,還是是一個頂點。

31、合併查找算法(Union-find)——給定一組元素,該算法常常用來把這些元素分爲多個分離的、彼此不重合的組。不相交集(disjoint-set)的數據結構可以跟蹤這樣的切分方法。合併查找算法可以在此種數據結構上完成兩個有用的操作:

查找:判斷某特定元素屬於哪個組。

合併:聯合或合併兩個組爲一個組。

32、維特比算法(Viterbi algorithm)——尋找隱藏狀態最有可能序列的動態規劃算法,這種序列被稱爲維特比路徑,其結果是一系列可以觀察到的事件,特別是在隱藏的Markov模型中。

以上就是Christoph博士對於最重要的算法的調查結果。

点赞