Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
For example, given n = 12
, return 3
because 12 = 4 + 4 + 4
; given n = 13
, return 2
because 13 = 4 + 9
.
題目的意思即給定一個正整數,找出k個可以開方的整數,使這k個整數的和爲指定的正整數並且使k值最小,返回這個最小的k(以下把這個數成爲res).
解題分析:
可以使用動態規劃的思想來解決,使用一個數組cntPerfectSquares[i]來保存數i的res,狀態轉移方程爲:
cntPerfectSquares[i] = min(cntPerfectSquares[i], cntPerfectSquares[i – j*j] + 1),其中j*j < =i
則代碼如下:
class Solution
{
public:
int numSquares(int n)
{
if (n <= 0)
{
return 0;
}
// cntPerfectSquares[i] = the least number of perfect square numbers
// which sum to i. Note that cntPerfectSquares[0] is 0.
vector<int> cntPerfectSquares(n + 1, INT_MAX);
cntPerfectSquares[0] = 0;
for (int i = 1; i <= n; i++)
{
// For each i, it must be the sum of some number (i - j*j) and
// a perfect square number (j*j).
for (int j = 1; j*j <= i; j++)
{
cntPerfectSquares[i] =
min(cntPerfectSquares[i], cntPerfectSquares[i - j*j] + 1);
}
}
return cntPerfectSquares.back();
}
};