leetcode 172. Factorial Trailing Zeroes

Given an integer n, return the number of trailing zeroes in n!.

Note: Your solution should be in logarithmic time complexity.

看到这道题,一开始没怎么想就直接搞的解法如下:

public class Solution {
    public int trailingZeroes(int n) {
        long result = cal(n);
        int count = 0;
        while(result%10==0){
            count++;
            result = result/10;
        }
        return count;
    }

    public long cal(int n){
        if(n==0||n==1)
            return 1;
        if(n==2){
            return 2;
        }
        return cal(n-1)*n;
    }
}

果然毫无疑问地超时。
然后开始分析,末尾有多少0 即被10整除多少次。拆分因子,能被2和5组合整除多少次,考虑到2出现的次数肯定大于5,所以考虑5出现的次数即可。5出现的次数只能在被5整除的数中,即5,15,25……又考虑到25,50,75,125等含有多个5,所以5的总数为SUM(N/5^1, N/5^2, N/5^3…)

算法如下:

public class Solution {
    public int trailingZeroes(int n) {   
        if(n<1) return 0;   
        int c = 0;   

        while(n/5 != 0) {    
            n /= 5;   
            c += n;   
        }   

        return c;   
    }      

}
点赞