Given an integer n, return the number of trailing zeroes in n!.
Note: Your solution should be in logarithmic time complexity.
看到这道题,一开始没怎么想就直接搞的解法如下:
public class Solution {
public int trailingZeroes(int n) {
long result = cal(n);
int count = 0;
while(result%10==0){
count++;
result = result/10;
}
return count;
}
public long cal(int n){
if(n==0||n==1)
return 1;
if(n==2){
return 2;
}
return cal(n-1)*n;
}
}
果然毫无疑问地超时。
然后开始分析,末尾有多少0 即被10整除多少次。拆分因子,能被2和5组合整除多少次,考虑到2出现的次数肯定大于5,所以考虑5出现的次数即可。5出现的次数只能在被5整除的数中,即5,15,25……又考虑到25,50,75,125等含有多个5,所以5的总数为SUM(N/5^1, N/5^2, N/5^3…)
算法如下:
public class Solution {
public int trailingZeroes(int n) {
if(n<1) return 0;
int c = 0;
while(n/5 != 0) {
n /= 5;
c += n;
}
return c;
}
}