有向图的强连通分解--Kosaraju算法

/** * 图的强连通分解——Kosaraju算法 **/
class Kosaraju {
public:
    Kosaraju(vector<vector<int> >& g) : g(g), t(0) {}
    void decompose() {
        vector<int> vertice_order;
        for (int i = 0; i < g.size(); ++i) vertice_order.push_back(i);
        this->dfs(vertice_order);
        this->transpose();
        vertice_order = this->get_vertice_order_by_f();
        t = 0;
        b.clear();
        f.clear();
        visited.clear();
        auto ret = this->dfs(vertice_order);
        for (auto ele_ret : ret) {
            for (auto ele : ele_ret) {
                cout<<ele<<",";
            }
            cout<<endl;
        }
        cout<<endl;
    }
private:
    void transpose() {
        for (int i = 0; i < g.size(); ++i) {
            for (int j = i + 1; j < g[i].size(); ++j) {
                swap(g[i][j], g[j][i]);
            }
        }
    }
    vector<int> get_vertice_order_by_f() {
        multimap<int, int> order;
        for (auto ele : f) {
            order.insert(make_pair(ele.second, ele.first));
        }
        vector<int> ret;
        for (auto ele_r = order.rbegin(); ele_r != order.rend(); ++ele_r) ret.push_back(ele_r->second);
        return ret;
    }
    vector<vector<int> > dfs(vector<int>& vertice_order) {
        vector<vector<int> > ret;
        for (auto vertice : vertice_order) {
            if (visited.count(vertice) == 0) {
                vector<int> ret_ele;
                dfs_inner(vertice, ret_ele);
                ret.push_back(ret_ele);
            }
        }
        return ret;
    }
    void dfs_inner(int s, vector<int>& ret) {
        b[s] = t++;
        visited.insert(s);
        ret.push_back(s);
        for (int adj = 0; adj < g.size(); ++adj) {
            if (visited.count(adj) == 0 && g[s][adj] > 0) {
                dfs_inner(adj, ret);
            }
        }
        f[s] = t++;
    }
private:
    int t;
    unordered_map<int, int> b;
    unordered_map<int, int> f;
    unordered_set<int> visited;
    vector<vector<int> >& g;
};
点赞