前言
最近为了解决Spark2.1的Bug,对Spark的源码做了不少修改,需要对修改的代码做编译测试,如果编译整个Spark项目快的话,也得半小时左右,所以基本上是改了哪个子项目就单独对那个项目编译打包。
Spark官方已经给出了如何使用mvn单独编译子项目的方法:<Building Spark – Spark 2.1.0 Documentation>
使用mvn单独编译子项目是节约了不少时间。但是频繁的改动项目,每次用mvn编译还是挺耗时间的。
之前看官方文档提到,对于开发者,为了提高效率,推荐使用sbt编译。于是,又查了下文档资料:<Useful Developer Tools>
咦,看到:Running Build Targets For Individual Projects,内容如下:
$ # sbt
$ build/sbt package
$ # Maven
$ build/mvn package -DskipTests -pl assembly
这不是坑么,虽然没怎么用sbt编译过Spark,但是sbt俺还是用过的。build/sbt package明明是编译整个项目的好吧,这哪是编译子项目啊。
翻遍官方所有跟编译有关的资料,无果。
最后,研究了下Spark的sbt定义,也就是下project/SparkBuild.scala文件,找到了使用sbt编译子项目的方法。
使用sbt编译子项目
下面是对spark-core重新编译打包的方法,我们需要使用REPL模式,大致的流程如下:
➜ spark git:(branch-2.1.0) ✗ ./build/sbt -Pyarn -Phadoop-2.6 -Phive
...
[info] Set current project to spark-parent (in build file:/Users/stan/Projects/spark/)
> project core
[info] Set current project to spark-core (in build file:/Users/stan/Projects/spark/)
> package
[info] Updating {file:/Users/stan/Projects/spark/}tags...
[info] Resolving jline#jline;2.12.1 ...
...
[info] Packaging /Users/stan/Projects/spark/core/target/scala-2.11/spark-core_2.11-2.1.0.jar ...
[info] Done packaging.
[success] Total time: 213 s, completed 2017-2-15 16:58:15
最后将spark-core_2.11-2.1.0.jar替换到jars或者assembly/target/scala-2.11/jars目录下就可以了。
选择的子项目的关键是project命令,如何知道有哪些定义好的子项目呢?这个还得参考project/SparkBuild.scala中BuildCommons的定义:
object BuildCommons {
private val buildLocation = file(".").getAbsoluteFile.getParentFile
val sqlProjects@Seq(catalyst, sql, hive, hiveThriftServer, sqlKafka010) = Seq(
"catalyst", "sql", "hive", "hive-thriftserver", "sql-kafka-0-10"
).map(ProjectRef(buildLocation, _))
val streamingProjects@Seq(
streaming, streamingFlumeSink, streamingFlume, streamingKafka, streamingKafka010
) = Seq(
"streaming", "streaming-flume-sink", "streaming-flume", "streaming-kafka-0-8", "streaming-kafka-0-10"
).map(ProjectRef(buildLocation, _))
val allProjects@Seq(
core, graphx, mllib, mllibLocal, repl, networkCommon, networkShuffle, launcher, unsafe, tags, sketch, _*
) = Seq(
"core", "graphx", "mllib", "mllib-local", "repl", "network-common", "network-shuffle", "launcher", "unsafe",
"tags", "sketch"
).map(ProjectRef(buildLocation, _)) ++ sqlProjects ++ streamingProjects
val optionallyEnabledProjects@Seq(mesos, yarn, java8Tests, sparkGangliaLgpl,
streamingKinesisAsl, dockerIntegrationTests) =
Seq("mesos", "yarn", "java8-tests", "ganglia-lgpl", "streaming-kinesis-asl",
"docker-integration-tests").map(ProjectRef(buildLocation, _))
val assemblyProjects@Seq(networkYarn, streamingFlumeAssembly, streamingKafkaAssembly, streamingKafka010Assembly, streamingKinesisAslAssembly) =
Seq("network-yarn", "streaming-flume-assembly", "streaming-kafka-0-8-assembly", "streaming-kafka-0-10-assembly", "streaming-kinesis-asl-assembly")
.map(ProjectRef(buildLocation, _))
val copyJarsProjects@Seq(assembly, examples) = Seq("assembly", "examples")
.map(ProjectRef(buildLocation, _))
val tools = ProjectRef(buildLocation, "tools")
// Root project. val spark = ProjectRef(buildLocation, "spark")
val sparkHome = buildLocation
val testTempDir = s"$sparkHome/target/tmp"
val javacJVMVersion = settingKey[String]("source and target JVM version for javac")
val scalacJVMVersion = settingKey[String]("source and target JVM version for scalac")
}
我们看下这个例子:
val sqlProjects@Seq(catalyst, sql, hive, hiveThriftServer, sqlKafka010) = Seq(
"catalyst", "sql", "hive", "hive-thriftserver", "sql-kafka-0-10"
).map(ProjectRef(buildLocation, _))
这是对sql项目定义的子项目,有:catalyst, sql, hive, hive-thriftserver, sql-kafka-0-10。
在sbt命令行中,可以使用projects命令查看所有的子项目,如下所示:
> projects
In file:/Users/stan/Projects/spark/
assembly
bagel
catalyst
core
docker-integration-tests
examples
graphx
hive
launcher
mllib
network-common
network-shuffle
oldDeps
repl
* spark
sql
...
我们如果需要编译catalyst这个项目,只需要进入sbt:project catalyst选择catalyst项目就可以了,后面使用的compile、package等命令都是针对这个项目的。
多谢@凤凰木的评论,还有一种非REPL的编译方式,比如要编译hive项目,我们可以直接在Spark源码目录下执行build/sbt hive/package
使用sbt执行单个测试
示例:build/sbt “~catalyst/test-only *FoldablePropagationSuite”
对catalyst项目执行测试,只测试FoldablePropagationSuite结尾的类。
~是对开发非常有用的东西,他表示进行持续测试,如果我们执行测试后发现case没有过,那么可以在不退出测试的情况下,直接去修改代码,保存代码后,sbt会再次执行测试。
如果需要对一个子项目执行测试,只需要执行:build/sbt sql/test(对sql项目做测试)。
结语
这下可以爽爽的编译Spark了。
还有一些有用的编译技巧,去参考<Useful Developer Tools>就可以了。